Skip to main content
Log in

Involvement of signaling pathways in bovine sperm motility, and effect of ergot alkaloids

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

There is evidence that ergot alkaloids can directly interact with mammalian spermatozoa affecting sperm functions. Ergot alkaloids exert their toxic or pharmaceutical effects through membrane receptor-mediated activities. This study investigated the signaling pathways involved in the in vitro inhibitory effects of both ergotamine (ET) and dihydroergotamine (DEHT) on the relative motility of bovine spermatozoa using specific inhibitors. Motile bovine spermatozoa were prepared using a Percoll gradient and incubated with ergot alkaloids with and without signaling pathway inhibitors. Co-incubation of ET or DHET with 100 μM prazosin (alpha 1-adrenergic receptor inhibitor) decreased (p < 0.05) relative motility of spermatozoa when compared with controls. In addition, preincubation of spermatozoa with 10 or 20 μM prazosin and DHET also reduced (p < 0.05) the number of motile spermatozoa. Relative sperm motility (motility of treated spermatozoa normalized to control sperm motility) was increased (p < 0.05) when co-incubations included ET and yohimbine (alpha 2-adrenergic receptor inhibitor); conversely, co-incubation of yohimbine (100 μM) and DHET decreased (p < 0.05) the percentage of motile spermatozoa when compared with controls. Pertussis toxin and cholera toxin (effectors of inhibitory and stimulatory G-proteins, respectively) altered (p < 0.05) relative sperm motility in a concentration dependent manner; however, co-incubation of pertussis or cholera toxin with ergot alkaloids had no interactive (p = 0.83) effects on the relative motility of spermatozoa. Co-incubation of Rp-cAMP (a membrane-permeable cAMP inhibitor) with 50 μM DHET had no effect (p > 0.05) on relative sperm motility; whereas, the co-incubation of 22.4 or 44.8 μM Rp-cAMP with 50 μM ET increased (p < 0.05) the percentage of motile spermatozoa when compared with 0 or 224 μM Rp-cAMP (49%, 65%, 59%, and 54%, respectively, for 0, 22.4, 44.8, and 224 μM of Rp-cAMP. An interaction between BAPTA-AM (a chelator of intracellular calcium) and alkaloids also impacted (p < 0.05) relative sperm motility. Generally, co-incubating spermatozoa with BAPTA-AM and ET increased the percentage of motile spermatozoa; however, co-incubation with DHET decreased relative sperm motility except with 41 μM BAPTA-AM. Collectively, these observations suggest that ET and DHET decreased the percentage of motile bovine spermatozoa via alpha adrenergic receptors. However, the second messenger systems involved with ergot alkaloid inhibition of relative motility of bovine spermatozoa remain to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Adeoya-Osiguwa, S. A.; Fraser, L. R. Cathine and norephedrine, both phenylpropanolamines, accelerate capacitation and then inhibit spontaneous acrosome loss. Hum. Reprod 20: 198–207; 2005. doi:10.1093/humrep/deh566.

    Article  PubMed  CAS  Google Scholar 

  • Allegrucci, C.; Liguori, L.; Minelli, A. Stimulation by N6-cyclopentyladenosine of A1 adenosine receptors, coupled to Gαi2 protein subunit, has a capacitative effect on human spermatozoa. Biol. Reprod 64: 1653–1659; 2001. doi:10.1095/biolreprod64.6.1653.

    Article  PubMed  CAS  Google Scholar 

  • Badia, A.; Moron, A.; Cuffi, L.; Vila, E. Effects of ergotamine on cardiovascular catecholamine receptors in the pithed rat. Gen. Pharmacol 19: 475–481; 1988. doi:10.1016/0306-3623(88)90051-1.

    PubMed  CAS  Google Scholar 

  • Chenette, P. E.; Siegel, M. S.; Vermesh, M.; Kletzky, A. O. Effect of bromocriptine on sperm function in vitro and in vivo. Obstet. Gynecol 77: 935–938; 1991.

    PubMed  CAS  Google Scholar 

  • Eason, M. G.; Kurose, H.; Holt, B. D.; Raymond, J. R.; Liggett, S. B. Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J. Biol. Chem 267: 15795–15801; 1992.

    PubMed  CAS  Google Scholar 

  • Fenichel, P.; Gharib, A.; Emiliozzi, C.; Donzeau, M.; Menezo, Y. Stimulation of human sperm during capacitation in vitro by an adenosine agonist with specificity for A2 receptors. Biol. Reprod 54: 1405–1411; 1996. doi:10.1095/biolreprod54.6.1405.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, L. R. Adenosine and its analogues, possibly acting at A2 receptors, stimulate mouse sperm fertilizing ability during early stages of capacitation. J. Reprod. Fertil 89: 467–476; 1990. doi:10.1530/jrf.0.0890467.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, G. R.; Senger, P. L. Effect of phenylephrine, ergonovine, oxytocin and norepinephrine as an extender ingredient on viability of bovine spermatozoa. J. Anim. Sci 67: 1573–1576; 1989.

    PubMed  CAS  Google Scholar 

  • Jang, S.; Yi, L. S. Identification of a 71 kDa protein as a putative non-genomic membrane progesterone receptor in boar spermatozoa. J. Endocrinol 184: 417–425; 2005. doi:10.1677/joe.1.05607.

    Article  PubMed  CAS  Google Scholar 

  • Jones, K. L.; Mccleary, C. R.; King, S. S.; Apgar, G. A.; Griswold, K. E. Case Study: Consumption of toxic fescue impairs bull reproductive parameters. Prof. Anim. Sci 20: 437–442; 2004.

    Google Scholar 

  • Kalkman, H. O.; Schneider, F. Effects of ergotamine and dihydroergotamine on 5-hydroxytryptamine-2A receptors in the isolated rat aorta. Pharmacology 53: 351–355; 1996. doi:10.1159/000139450.

    Article  PubMed  CAS  Google Scholar 

  • Larson, B. T.; Samford, M. D.; Camden, J. M.; Piper, E. L.; Kerley, M. S.; Paterson, J. A.; Turner, J. T. Ergovaline binding and activation of D2 dopamine receptors in GH4ZR7 cells. J. Anim. Sci 73: 1396–1400; 1995.

    PubMed  CAS  Google Scholar 

  • Looper, M. L.; Rorie, R. W.; Person, C. N.; Lester, T. D.; Hallford, D. M.; Aiken, G. E.; Roberts, C. A.; Rottinghaus, G. E.; Rosenkrans, C. F. Jr. Influence of toxic endophyte-infected fescue on sperm characteristics and endocrine factors of yearling Brahman-influenced bulls. J. Anim. Sci. 87: 1184–1191; 2009. doi:10.2527/jas.2008-1258.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, E.; Kobilka, B. K.; Scheinin, M. Gene targeting–homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol. Sci 18: 211–219; 1997.

    PubMed  CAS  Google Scholar 

  • Markstein, R. Neurochemical effects of some ergot derivatives: A basis for their antiparkinson actions. J. Neural Transm. 51: 39–59; 1981. doi:10.1007/BF01664004.

    Article  PubMed  CAS  Google Scholar 

  • Marquez, B.; Suarez, S. S. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol. Reprod 70: 1626–1633; 2004. doi:10.1095/biolreprod.103.026476.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, E. A.; Ford, W. C. Effects of cryopreservation on the intracellular calcium concentration of human spermatozoa and its response to progesterone. Mol. Reprod. Dev 37: 241–246; 1994. doi:10.1002/mrd.1080370216.

    Article  PubMed  CAS  Google Scholar 

  • Patni, A. K.; Gupta, S.; Sharma, A.; Tiwary, A. K.; Garg, S. K. Role of intracellular calcium in the spermicidal action of 2′,4′-dichlorobenzamil, a novel contact spermicide. J. Pharm. Pharmacol 53: 1387–1392; 2001. doi:10.1211/0022357011777738.

    Article  PubMed  CAS  Google Scholar 

  • Pihlavisto, M.; Scheinin, M. Functional assessment of recombinant human alpha(2)-adrenoceptor subtypes with cytosensor microphysiometry. Eur. J. Pharmacol 385: 247–253; 1999. doi:10.1016/S0014-2999(99)00715-3.

    Article  PubMed  CAS  Google Scholar 

  • Pohjanoksa, K.; Jansson, C. C.; Luomala, K.; Marjamaki, A.; Savola, J. M.; Scheinin, M. Alpha2-adrenoceptor regulation of adenylyl cyclase in CHO cells: Dependence on receptor density, receptor subtype and current activity of adenylyl cyclase. Eur. J. Pharmacol 335: 53–63; 1997. doi:10.1016/S0014-2999(97)01154-0.

    Article  PubMed  CAS  Google Scholar 

  • Roldan, E. R.; Murase, T.; Shi, Q. X. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266: 1578–1581; 1994. doi:10.1126/science.7985030.

    Article  PubMed  CAS  Google Scholar 

  • Roquebert, J.; Demichel, P. Alpha-adrenergic agonist and antagonist activity of dihydroergotoxine in rats. J. Pharm. Pharmacol 37: 415–420; 1985.

    PubMed  CAS  Google Scholar 

  • Roquebert, J.; Grenie, B. Alpha 2-adrenergic agonist and alpha 1-adrenergic antagonist activity of ergotamine and dihydroergotamine in rats. Arch. Int. Pharmacodyn. Ther 284: 30–37; 1986.

    PubMed  CAS  Google Scholar 

  • Roquebert, J.; Malek, A.; Gomond, P.; Demichel, P. Effect of dihydroergocristine on blood pressure and activity at peripheral alpha-adrenoceptors in pithed rats. Eur. J. Pharmacol 97: 21–27; 1984. doi:10.1016/0014-2999(84)90508-9.

    Article  PubMed  CAS  Google Scholar 

  • Rosenkrans, C. F. Jr.; Zeng, G. Q.; McNamara, G. T.; Schoff, P. K.; First, N. L. Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod 49: 459–462; 1993. doi:10.1095/biolreprod49.3.459.

    Article  PubMed  CAS  Google Scholar 

  • Saberwal, G. S.; Sharma, M. K.; Balasinor, N.; Choudhary, J.; Juneja, H. S. Estrogen receptor, calcium mobilization and rat sperm motility. Mol. Cell. Biochem 237: 11–20; 2002. doi:10.1023/A:1016549922439.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, C.; Limbird, L. E. Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues. Pharmacol. Ther 84: 193–205; 1999. doi:10.1016/S0163-7258(99)00032-7.

    Article  PubMed  CAS  Google Scholar 

  • Schoning, C.; Flieger, M.; Pertz, H. H. Complex interaction of ergovaline with 5-HT2A, 5-HT1B/1D, and alpha1 receptors in isolated arteries of rat and guinea pig. J. Anim. Sci 79: 2202–2209; 2001.

    PubMed  CAS  Google Scholar 

  • Schuenemann, G. M.; Edwards, J. L.; Davis, M. D.; Blackmon, H. E.; Scenna, F. N.; Rohrbach, N. R.; Saxton, A. M.; Adair, H. S.; Hopkins, F. M.; Waller, J. C.; Schrick, F. N. Effects of administration of ergotamine tartrate on fertility of yearling beef bulls. Theriogenology 63: 1407–1418; 2005a. doi:10.1016/j.theriogenology.2004.07.014.

    Article  PubMed  CAS  Google Scholar 

  • Schuenemann, G. M.; Edwards, J. L.; Hopkins, F. M.; Rohrbach, N. R.; Adair, H. S.; Scenna, F. N.; Waller, J. C.; Oliver, J. W.; Saxton, A. M.; Schrick, F. N. Fertilty aspects in yearling beef bulls grazing endophyte-infected tall fescue pastures. Reprod. Fertil. Dev 17: 479–486; 2005b. doi:10.1071/RD05005.

    Article  PubMed  CAS  Google Scholar 

  • Shen, M. R.; Linden, J.; Chiang, P. H.; Chen, S. S.; Wu, S. N. Adenosine stimulates human sperm motility via A2 receptors. J. Pharm. Pharmacol 45: 650–653; 1993.

    PubMed  CAS  Google Scholar 

  • Silberstein, S. D. The pharmacology of ergotamine and dihydroergotamine. Headache 37: 15–25; 1997. doi:10.1046/j.1526-4610.1997.3701015.x.

    PubMed  Google Scholar 

  • Tanoue, A.; Koshimizu, T.; Tsujimoto, G.; Nakata, H.; Hirose, S.; Fukuzawa, T.; Abe, J.; Kurose, H. Heterogeneity of G protein-coupled receptor generated by post-translational mechanisms and its clinical meanings. Nippon Yakurigaku Zasshi 124: 235–243; 2004. doi:10.1254/fpj.124.235.

    PubMed  CAS  Google Scholar 

  • Vijayaraghavan, S.; Mohan, J.; Gray, H.; Khatra, B.; Carr, D. W. A role for phosphorylation of glycogen synthase kinase-3a in bovine sperm motility regulation. Biol. Reprod 62: 1647–1654; 2000. doi:10.1095/biolreprod62.6.1647.

    Article  PubMed  CAS  Google Scholar 

  • Villalon, C. M.; De Vries, P.; Rabelo, G.; Centurion, D.; Sanchez-Lopez, A.; Saxena, P. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: Role of 5-HT1B/1D receptors and alpha2-adrenoceptors. Br. J. Pharmacol 126: 585–594; 1999. doi:10.1038/sj.bjp.0702324.

    Article  PubMed  CAS  Google Scholar 

  • Wasco, W. M.; Kincaid, R. L.; Orr, G. A. Identification and characterization of calmodulin-binding proteins in mammalian sperm flagella. J. Biol. Chem 264: 5104–5111; 1989.

    PubMed  CAS  Google Scholar 

  • White, D. R.; Clarkson, J. S.; Ratnasooriya, W. D.; Aitken, R. J. Complementary effects of propranolol and nonoxynol-9 upon human sperm motility. Contraception 52: 241–247; 1995. doi:10.1016/0010-7824(95)00190-L.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Publication of this paper was with the approval of the Arkansas Agricultural Experiment Station, University of Arkansas Division of Agriculture. Our research was supported in part by the USDA-ARS Dale Bumpers Small Farms Research Center, under Cooperative Agreement No. 58-6227-3-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Rosenkrans Jr.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Looper, M.L., Johnson, Z.B. et al. Involvement of signaling pathways in bovine sperm motility, and effect of ergot alkaloids. In Vitro Cell.Dev.Biol.-Animal 45, 483–489 (2009). https://doi.org/10.1007/s11626-009-9191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9191-8

Keywords

Navigation