Skip to main content
Log in

Documentation of the Sirjan Orocline in the southeast Sanandaj-Sirjan Zone, Iran

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

At the southeastern part of the Sanandaj-Sirjan Zone of Iran, a group of structural elements outline a large-scale arc curvature around a vertical axis. This curvature comprises several elongated structural elements and their dividing faults, axialfold traces, layering, and foliation. The most frequent lithological units include Paleozoic metamorphic rocks, Mesozoic-Paleogene sedimentary rocks, and Mesozoic magmatic-ophiolitic complex disposed in several anticlines and synclines, forming a horseshoeshaped structure with a 240-km arc length and a 90-km wavelength. We name this structure the Sirjan Orocline, and characterize this structure here through field observations and satellite image analyses. The Sirjan Orocline formed during the late Eocene-Oligocene related to the most significant deformation event after regional metamorphism. The final form of this structural arc is affected by a younger tectonic event that compressed and transected this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, et al. (2011) Zagros orogeny: a subduction-dominated process. Geological Magazine 148(5-6): 692–725. https://doi.org/10.1017/S001675681100046X

    Google Scholar 

  • Alavi M (1991) Sedimentary and Structural Characteristics of the Paleo-Tethys Remnants in Northern Iran. Geological Survay of American Bulletin 103: 983–992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2

    Google Scholar 

  • Albers J (1967) Belt of sigmoidal bending and right-lateral faulting in the Western Great Basin. Geological Society of American Bulletin 78: 143–156. https://doi.org/10.1130/0016-7606(1967)78[143:BOSBAR]2.0.CO;2

    Google Scholar 

  • Alvarez W, Cocozza T, Wezel FC, (1974) Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature 248 (5446): 309. https://doi.org/10.1038/248309a0

    Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. Zagros-Hindu Kush-Himalaya Geodynamic Evolution 3: 5–32.

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a Paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 5: 101–117.

    Google Scholar 

  • Berberian M, Nogol M (1974) Preliminary explanation text of the geology of Deh Sard and Khabr maps with some remarks on the metamorphic complexes and the tectonics of the area (two geological maps, 1/100000 from the Hajiabad quadrangle map). Geological Survey of Iran, internal report.

    Google Scholar 

  • Braud J, Ricou LE (1971) L’accident du Zagros ou Main Thrust un charriage et un coulissement. Comptes Rendus Acad Sci 272: 203–206.

    Google Scholar 

  • Bröcker M, Rad GF, Abbaslu F et al. (2014) Geochronology of high-grade metamorphic rocks from the Anjul area, Lut block, eastern Iran. Journal of Asian Earth Sciences 82: 151–162. https://doi.org/10.1016/j.jseaes.2013.12.021

    Google Scholar 

  • Burtman VS (1986). Origin of structural arcs of the Carpathian-Balkan region. Tectonophysics 127(3-4): 245–260. https://doi.org/10.1016/0040-1951(86)90063-6

    Google Scholar 

  • Carey SW (1955) The orocline concept in geotectonics, part 1: Papers and Proceedings of the Royal Society of Tasmania 89: 255–288.

    Google Scholar 

  • Cederquist DP, Van der Voo R, van der Pluijm BA (2006) Synfolding remagnetization of Cambro-Ordovician carbonates from the Pennsylvania Salient post-dates oroclinal rotation. Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, Tectonophysics 422: 41–54. https://doi.org/10.1016/j.tecto.2006.05.005

    Google Scholar 

  • Christie-Blick N, Biddle KT (1985) Deformation and basin formation along strike-slip fault, In: Biddle, K.T. and Christie-Blick, N. (eds) Strike-Slip deformation. Basin formation, and Sedimentation, SEPM special publications 37: 1–34.

    Google Scholar 

  • Conrad G, Montigny R, Thuizat R et al. (1982) Dynamique cénozoïque du «Bloc du Lout»(Iran) d’après les données paléoagnétiques, isotopiques, pétrologiques et structurales. Géologie Méditerranéenne 9: 23–32.

    Google Scholar 

  • Cunningham WD, Mann P (2007) Tectonics of strike-slip restraining and releasing bends. Geological Society of london Special Publication, V.290, p 482. https://doi.org/10.1144/SP290.1

    Google Scholar 

  • Davoudzadeh M, Soffel H, Schmidt K (1981) On the rotation of the Central-East Iran microplate. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 3: 180–92.

    Google Scholar 

  • Eldredge S, Bachtadse V, Van Der Voo R (1985) Paleomagnetism and the Orocline hypothesis. Original research Article Tectonophysics 119: 153–179. https://doi.org/10.1016/0040-1951(85)90037-X

    Google Scholar 

  • Emami MH, Sadeghi MM, Omrani SJ (1993) Magmatic Map of Iran 1:1,000,000, Geological Survey of Iran, internal report.

    Google Scholar 

  • Falcon NL (1967) The Geology of the northeast margin of the Arabian basement shield. Advancement of Science 24: 31–42.

    Google Scholar 

  • Farhudi G (1978) A comparison of Zagros geology to island arcs. The Journal of Geology 86: 323–334.

    Google Scholar 

  • Fernández-Lozano J, Pastor-Galán D, Gutiérrez-Alonso G, Franco P (2016) New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain. Tectonophysics 681: 195–208. https://doi.org/10.1016/j.tecto.2016.02.019

    Google Scholar 

  • Fleuty MJ (1964) The description of folds, Proceeding of the Geologists Association 75: 461–492.

    Google Scholar 

  • Fossen H (2016) Structural geology. Cambridge University Press. p 452.

    Google Scholar 

  • Gutiérrez-Alonso, Gabriel, et al. (2004) “Orocline triggered lithospheric delamination.” Orogenic curvature: Integrating paleomagnetic and structural analyses. Vol. 383. Geological Society of America 383: 121–130.

    Google Scholar 

  • Gutiérrez-Alonso G, Johnston ST, Weil AB, Pastor-Galán D, Fernández-Suárez J (2012). Buckling an orogen: the Cantabrian Orocline. GSA Today 22(7): 4–9. https://doi.org/10.1130/GSATG141A.1

    Google Scholar 

  • Hessami K, Jamali F, Tabassi H (2003) Major Active Faults of Iran, Scale 1:2500000, Tehran: International Institute of Earthquakes Engineering and Seismology.

    Google Scholar 

  • Hnat JS, van der Pluijm BA, Van der Voo R (2009) Remagnetization in the Tennessee salient, Southern Appalachians, USA: Constraints on the timing of deformation. Tectonophysics 474(3-4): 709–722. https://doi.org/10.1016/j.tecto.2009.05.017

    Google Scholar 

  • Johnston ST, Weil AB, Gutiérrez-Alonso G (2013) Oroclines: Thick and thin. Bulletin 125(5-6): 643–663. https://doi.org/10.1130/B30765.1

    Google Scholar 

  • Koike K, Nagano S, Ohmi M (1995) Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computer Geoscience 21: 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7

    Google Scholar 

  • Li P, Rosenbaum G, Donchak PJ (2012) Structural evolution of the Texas Orocline, eastern Australia. Gondwana Research 22(1): 279–289. https://doi.org/10.1016/j.gr.2011.09.009

    Google Scholar 

  • Little TA, Mortimer N (2001) Rotation of ductile fabrics across the Alpine Fault and Cenozoic bending of the New Zealand Orocline. Journal of the Geological Society, London 158:745–756. https://doi.org/10.1144/jgs.158.5.745

    Google Scholar 

  • Majidi M (1993) Geological Map of Hajiabad: Tehran, Geological Survey of iran, scale 1:250,000.

    Google Scholar 

  • Marshak S (2004) Salients, recesses, arcs, oroclines, and syntaxes, A review of ideas concerning the formation of mapview curves in fold-thrust belts, in K. R. McClay, ed., Thrust tectonics and hydrocarbon systems 82: 131–156.

    Google Scholar 

  • Mattei M, Cifelli F, Alimohammadian H, Rashid H, Winkler A, Sagnotti L (2017) Oroclinal bending in the Alborz Mountains (Northern Iran): New constraints on the age of South Caspian subduction and extrusion tectonics. Gondwana Research 42: 13–28. https://doi.org/10.1016/j.gr.2016.10.003

    Google Scholar 

  • Meyer B, Dortz K (2007) Strike-Slip kinematics in Central and Eastern Iran: Estimating fault slip-rates averaged over the Holocene. Tectonics 26. https://doi.org/10.1029/2006TC002073

    Google Scholar 

  • Mijalkovic N, Cvetic S, Dimitrivic MD (1979) Geological quadrangle map of Baft, Scale: 1:100,000, sheet 7348, Geological Survey of Iran, Tehran.

    Google Scholar 

  • Mijalkovic N, Cvetic S, Dimitrivic MD (1979) Geological quadrangle map of Balvard, Scale: 1:100,000, sheet 7248, Geological Survey of Iran, Tehran.

    Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous- Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences 21: 397–412. https://doi.org/10.1016/S1367-9120(02)00035-4

    Google Scholar 

  • Musgrave RJ (2015) Oroclines in the Tasmanides. Journal of Structural Geology, 80, pp. 72–98. https://doi.org/10.1016/j.jsg.2015.08.010

    Google Scholar 

  • Ong PF, van der Pluijm BA, Van der Voo R (2007) Early rotation and late folding in the Pennsylvania salient (U.S. Appalachians): Evidence from calcite-twinning analysis of Paleozoic carbonates. Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA. GSA Bulletin; July/August 119;7/8: 796–804. https://doi.org/10.1130/B26013.1.

    Google Scholar 

  • Pastor-Galán D, Gutiérrez-Alonso G, Weil AB (2011) Orocline timing through joint analysis: Insights from the Ibero- Armorican Arc. Tectonophysics 507(1-4): 31–46. https://doi.org/10.1016/j.tecto.2011.05.005

    Google Scholar 

  • Pastor-Galán, D, Groenewegen T, Brouwer D et al. (2015) One or two oroclines in the Variscan orogen of Iberia? Implications for Pangea amalgamation. Geology 43(6): 527–530. https://doi.org/10.1130/G36701.1

    Google Scholar 

  • Ramsay JG, Huber MI (1987) The techniques of modern structural geology, 2: Folds and Fractures. Academic Press. p 391.

    Google Scholar 

  • Rice SP, Robertson AH, Ustaömer T (2006) Late Cretaceous- Early Cenozoic tectonic evolution of the Eurasian active margin in the Central and Eastern Pontides, northern Turkey. Geological Society, London, Special Publications 260(1): 413–445. https://doi.org/10.1144/GSL.SP.2006.260.01.17

    Google Scholar 

  • Ries AC (1978) The opening of the Bay of Biscayreview. Earth-Science Reviews 14: 35–36. https://doi.org/10.1016/0012-8252(78)90041-7

    Google Scholar 

  • Rosenbaum G (2012) Oroclines of the southern New England orogen, eastern Australia. Episodes 35(1): 187–194. https://doi.org/10.18814/epiiugs/2012/v35i1/018

    Google Scholar 

  • Sabzehei M, Eshraghi SA, Roshan Ravan J, Seraj M (1997) Geological Map of Gol-e Gohar: Tehran, Geological Survey of iran, scale 1:100,000.

    Google Scholar 

  • Sabzehei M, Roshan Ravan J, Nazemzadeh M, Azizian H (1997) Series Geological Map of Khabr, Scale: 1:100,000, Geological Survey of Iran, Tehran.

    Google Scholar 

  • Sabzehei M, RoshanRavan J, Nazemzadeh M, Azizian H (1996) Series Geological Map of Baghat, Scale: 1:100,000, Geological Survey of Iran, Tehran.

    Google Scholar 

  • Sabzehei, M., Atapour A (2007) Series Geological Map of Dehsard, Scale: 1:100,000, Geological Survey of Iran, Tehran.

    Google Scholar 

  • Sarkarinejad K, Partabian A, Faghih A (2013) Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone. Journal of Structural Geology 48: 126–136 https://doi.org/10.1016/j.jsg.2012.11.009.

    Google Scholar 

  • Schill E, Appel E, Crouzet C, et al. (2004) Oroclinal bending versus regional significant clockwise rotations in the Himalayan arc Constraints from secondary pyrrhotite remanences. Geological Society of America Special Paper. 383: 2383–3383.

    Google Scholar 

  • Searle M P, Cherry AG, Ali MY, et al. (2014) Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision. GeoArabia 19: 135–174.

    Google Scholar 

  • Shafaii Moghadam H, Robert JS, Rahgoshay M (2013) the Dehshirophiolite (central Iran): Geochemical constraints on the origin and evolution of the Inner Zagros ophiolite belt. Geological Society of America Bulletin 75083-0688. https://doi.org/10.1130/B30066.1

    Google Scholar 

  • Sheikholeslami MR (2015) Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–Sirjan Zone. Iran. Journal of Asian Earth Sciences 106: 130–149. https://doi.org/10.1016/j.jseaes.2015.03.007

    Google Scholar 

  • Soheili M, Mijlkovic N, Cvetic S (1985) Series Geological Map of Sirjan, Scale: 1:250,000, Geological Survey of Iran, Tehran.

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196(1-2): 17–33. https://doi.org/10.1016/S0012-821X(01)00588-X

    Google Scholar 

  • Tapponier P, and Molnar P (1976) Slip-line field theory and large-scale continental tectonics. Nature 264: 319–324. https://doi.org/10.1038/264319a0

    Google Scholar 

  • Van Der Voo R (1996) Paleomagnetism, Oroclines, and Growth of the Continental Crust, Department of Geological Sciences, University of Michigan AnnArbor 100: 161–164. https://doi.org/10.1130/1052-5173(2004)014<4:POAGOT>2.0.CO;2

    Google Scholar 

  • Weil AB, Gutiérrez-Alonso G, Johnston ST et al. (2013) Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: A geologic synthesis. Tectonophysics 582: 25–49. https://doi.org/10.1016/j.tecto.2012.10.006

    Google Scholar 

  • Weil AB, Sussman AJ (2004) Classifying curved orogens based on timing of spatial relationships between structural development and vertical-axis rotations. Geological Society of America 383: 1–15. https://doi.org/10.1130/0-8137-2383-3(2004)383[1:CCOBOT]2.0.CO;2

    Google Scholar 

  • Weil AB, Van der Voo R, van der Pluijm BA (2001) Oroclinal bending and evidence against the Pangea megashear: the Cantabria-Asturias arc (northern Spain). Geology 29(11): 991–994. https://doi.org/10.1130/0091-7613(2001)029<0991:OB AEAT>2.0.CO;2

    Google Scholar 

  • Weil AB, Van der Voo R, Van der Pluijm BA, Parés JM (2000) The formation of an orocline by multiphase deformation: a paleomagnetic investigation of the Cantabria–Asturias Arc (northern Spain). Journal of Structural Geology 22(6): 735–756. https://doi.org/10.1016/S0191-8141(99)00188-1

    Google Scholar 

  • Yousefi H, Friedberg N (1994) Aeromagnetic Map of Iran, Scale 1:2,500,000, Tehran: Geological Survey of Iran.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Research Council of University of Sistan and Baluchestan, Zahedan, Iran. Authors are grateful to editors and anonymous reviewers for their careful reading of our manuscript and many constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Partabian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partabian, A., Bagheri, S., Morshedi, F. et al. Documentation of the Sirjan Orocline in the southeast Sanandaj-Sirjan Zone, Iran. J. Mt. Sci. 17, 528–541 (2020). https://doi.org/10.1007/s11629-019-5818-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-019-5818-8

Keywords

Navigation