Skip to main content
Log in

A Correlation Between Failure Angle and Constituent for Al-AlN Composites Under Uniaxial Tensile Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-AlN composites with different AlN reinforcement fractions and porosity were fabricated through nitridation of laser-sintered AA 6061 powder followed by infiltration with AA 6061. Their failure behaviors were investigated under uniaxial tensile loading conditions. Tensile testing and fractography indicate that the fracture mode changes gradually from ductile to brittle fracture with increasing AlN reinforcement or porosity. An analysis of the fractured Al-AlN tensile samples reveals that the failure surface angle, θ, is dictated by the volume fraction of the matrix, f m , in a form of tan θ = f 5.5 m .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. INSTRON is a trademark of Instron, Canton, MA.

  2. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. W. Soboyejo: Mechanical Properties of Engineered Materials, Marcel Dekker, New York, NY, 2003.

    Google Scholar 

  2. G.S. Holister: Developments in Composite Materials-2, Applied Science Publishers, London, 1981.

    Google Scholar 

  3. S. Suresh and A. Mortensen: Int. Mater. Rev., 1997, vol. 42, pp. 85–116.

    Article  CAS  Google Scholar 

  4. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Article  CAS  Google Scholar 

  5. N. Tuncer, G. Arslan, E. Maire, and L. Salvo: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7368–74.

    Article  CAS  Google Scholar 

  6. I.C. Konstantinidis and S.A. Tsipas: Mater. Des., 2010, vol. 31, pp. 4490–95.

    Article  CAS  Google Scholar 

  7. L.J. Gibson and M.A. Ashby: Cellular Solids: Structure and Properties, Pergamon Press, Oxford, United Kingdom, 1988.

  8. A.E. Simon and L.J. Gibson: Acta Mater., 1998, vol. 46, pp. 3109–23.

    Article  Google Scholar 

  9. Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Phys. Rev. Lett., 2003, vol. 91, p. 045505.

    Article  CAS  Google Scholar 

  10. Z.F. Zhang and J. Eckert: Phys. Rev. Lett., 2005, vol. 94, p. 094301.

    Article  CAS  Google Scholar 

  11. M.M. Trexler and N.N. Thadhani: Progr. Mater. Sci., 2010, vol. 55, pp. 759–839.

    Article  CAS  Google Scholar 

  12. M.L. Lee, Y. Li, and C.A. Schuh: Acta Mater., 2004, vol. 52, pp. 4121–31.

    Article  CAS  Google Scholar 

  13. F.F. Wu, Z.F. Zhang, S.X. Mao, A. Peker, and J. Eckert: Phys. Rev. B, 2007, vol. 75, p. 134201.

    Article  Google Scholar 

  14. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  15. T.B. Sercombe and G.B. Schaffer: Science, 2003, vol. 301, pp. 1225–27.

    Article  CAS  Google Scholar 

  16. T.B. Sercombe and G.B. Schaffer: Acta Mater., 2004, vol. 52, pp. 3019–25.

    Article  CAS  Google Scholar 

  17. P. Yu and G.B. Schaffer: Acta Mater., 2009, vol. 57, pp. 163–70.

    Article  CAS  Google Scholar 

  18. P. Yu, M. Qian, L. Li, and G.B. Schaffer: Acta Mater., 2010, vol. 58, pp. 3790–97.

    Article  CAS  Google Scholar 

  19. ASTM 8M-04: “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 2004.

  20. F.P. Beer, E.R. Johnston, and J.T. DeWolf: Mechanics of Materials, McGraw-Hill, New York, NY, 2006.

    Google Scholar 

  21. T.H. Courtney: Mechanical Behaviour of Materials, McGraw-Hill, Singapore, 2000.

    Google Scholar 

  22. N.E. Dowling: Mechanical Behaviour of Materials, Prentice Hall, Englewood Cliffs, NJ, 1999.

    Google Scholar 

Download references

Acknowledgments

The authors thank 3D Systems, Inc. and the Australian Research Council (ARC) for financial support. Constructive comments and useful suggestions from the reviewers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yu.

Additional information

Manuscript submitted June 1, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, P., Schaffer, G.B. & Qian, M. A Correlation Between Failure Angle and Constituent for Al-AlN Composites Under Uniaxial Tensile Conditions. Metall Mater Trans A 43, 3293–3299 (2012). https://doi.org/10.1007/s11661-012-1125-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1125-5

Keywords

Navigation