Skip to main content
Log in

The Sintering, Sintered Microstructure and Mechanical Properties of Ti-Fe-Si Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A systematic study has been conducted of the sintering, sintered microstructure and tensile properties of a range of lower cost Ti-Fe-Si alloys, including Ti-3Fe-(0-4)Si, Ti-(3-6)Fe-0.5Si, and Ti-(3-6)Fe-1Si (in wt pct throughout). Small additions of Si (≤1 pct) noticeably improve the as-sintered tensile properties of Ti-3Fe alloy, including the ductility, with fine titanium silicides (Ti5Si3) being dispersed in both the α and β phases. Conversely, additions of  >1 pct Si produce coarse and/or networked Ti5Si3 silicides along the grain boundaries leading to predominantly intergranular fracture and, hence, poor ductility, although the tensile strength continues to increase because of the reinforcement by Ti5Si3. Increasing the Fe content in the Ti-xFe-0.5/1.0Si alloys above 3 pct markedly increases the average grain size and changes the morphology of the α-phase phase to much thinner and more acicular laths. Consequently, the ductility drops to <1 pct. Si reacts exothermically with Fe to form Fe-Si compounds prior to the complete diffusion of the Fe into the Ti matrix during heating. The heat thus released in conjunction with the continuous external heat input melts the silicides leading to transient liquid formation, which improves the densification during heating. No Ti-TiFe eutectoid was observed in the as-sintered Ti-Fe-Si alloys. The optimum PM Ti-Fe-Si compositions are determined to be Ti-3Fe-(0.5-1.0)Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.C. Li, H. Liu, and D.L. Zhou: Titanium Smelting Technologies, Chemical Industry Press, Beijing, China, 2009, pp. 209–14.

    Google Scholar 

  2. M. Qian: Int. J. Powder Metall., 2010, vol. 46 (5), pp. 29–44.

    Google Scholar 

  3. H. Nakajima, K. Yusa, and Y. Kondo: Scripta Mater., 1996, vol. 34, pp. 249–53.

    Article  CAS  Google Scholar 

  4. Z.Z. Fang: Int. J. Powder Metall., 2010, vol. 46, pp. 9–17.

    Google Scholar 

  5. D.B. Lee, K.B. Park. H.W. Jeong, and S.E. Kim: Mater. Sci. Eng. A., 2002, vol. 328 pp. 161–68.

  6. TIMETAL Datasheets, TIMETAL 10-2-3, http://www.timet.com.

  7. S. Murakami, K. Ozaki, K. Ono, and Y. Itsumi: R&D Kobe Steel Engineering Reports, 2010, vol. 60 pp. 37–41.

  8. TIMETAL Datasheets, TIMETAL 54M, http://www.timet.com.

  9. W. Wei, Y. Liu, K. Zhou, and B. Huang: Powder Metall., 2003, vol. 46, pp. 246–50.

    Article  CAS  Google Scholar 

  10. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6719–26.

  11. J.F. Murdocki and C.J. Mcharguet: Acta Metall., 1968, vol. 16, pp. 493–500.

    Article  Google Scholar 

  12. B.Y. Chen, K.S. Hwang, and K.L. Ng: Mater. Sci. Eng. A., 2011, vol. 528, pp. 4556–63.

    Article  Google Scholar 

  13. H. Kyogoku, S. Komatsu, K. Shinohara, H. Jinushi, and T. Toda: J. Jpn. Soc. Powder Metall., 1994, vol. 41, pp. 1075–79.

    Article  CAS  Google Scholar 

  14. H. Kyogoku, S. Komatsu, I. Tsuchitori, and T. Toda: J. Jpn. Soc. Powder Metall., 1995, vol. 42, pp. 1052–56.

    Article  CAS  Google Scholar 

  15. P.G. Esteban, E.M. Ruiz-Navas, and E. Gordo: Mater. Sci. Eng. A., 2010, vol. 527, pp. 5664–69.

    Article  Google Scholar 

  16. P.G. Esteban, L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo: Powder Metall., 2011, vol. 54, pp. 242–52.

    Article  CAS  Google Scholar 

  17. Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, and B.Y. Huang: Mater. Sci. Eng. A., 2006, vol. 418, pp. 25–35.

    Article  Google Scholar 

  18. M.R. Winstone, R.D. Rawlings, and D.R.F. West: J. Less-Common Metals, 1975, vol. 39, pp. 205–17.

    Article  CAS  Google Scholar 

  19. P.J. Bania, A.J. Hutt, R.E. Adams, and W.M. Parris: Titanium ‘92’ Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, 1993, p. 2787.

  20. P.G. Allen, P.J. Bania, A.J. Hutt, and Y. Combres: Titanium ‘95’ Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., IOM, Cambridge, U.K., 1995, p. 1938.

  21. Y.F. Yang, S.D. Luo, G.B. Schaffer, and M. Qian: Mater. Sci. Eng. A., 2011, vol. 528, pp. 7381–87.

  22. R.M. German: Liquid Phase Sintering, Plenum Press, New York, NY, 1985, p. 162.

  23. P. Boch and J. C. Niepce: Ceramic Materials: Processes, Properties and Applications, ISTE, London, U.K., 2007, p. 59.

  24. R.N. Lumley and G.B. Schaffer: Scripta Mater., 1996, vol. 35, pp. 589–95.

    Article  CAS  Google Scholar 

  25. R.N. Lumley and G.B. Schaffer: Scripta Mater., 1998, vol. 39, pp. 1089–94.

    Article  CAS  Google Scholar 

  26. I.M. Robertson and G.B. Schaffer: Powder Metall., 2010, vol. 53, pp. 27–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council (ARC) through the Center of Excellence for Design in Light Metals and an Australian Postdoctoral Fellowship for Y.F. Yang. Dr. Ming Yan of The University of Queensland performed the TEM work for this paper (Figure 8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Qian.

Additional information

Manuscript submitted November 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.F., Luo, S.D., Schaffer, G.B. et al. The Sintering, Sintered Microstructure and Mechanical Properties of Ti-Fe-Si Alloys. Metall Mater Trans A 43, 4896–4906 (2012). https://doi.org/10.1007/s11661-012-1272-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1272-8

Keywords

Navigation