Skip to main content
Log in

Transformation of Lamellar Structures in Equal Channel Angular Pressing: Geometric Model and Application to Nickel Aluminum Bronze

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nickel aluminum bronze (NAB) with a duplex structure was subjected to equal channel angular pressing (ECAP). Samples were pressed for up to four passes at 673 K (400 °C) using routes A, BA, BC, and C, respectively, and the evolution of the microstructures was characterized. A detailed geometric model was developed to enable systematic and quantitative analysis of the transformation of the lamellar structure during ECAP. Depending on their orientations before each ECAP pass, the lamellae were either stretched, leading to fragmentation, or compressed, resulting in buckling and spheroidisation at locations of high curvature. Thanks to the continuous rotation of lamellae into the stretching orientations in route A and the non-plane strain deformation in the two B routes, they are demonstrated to be the most effective in breaking down the lamellar structure. In contrast, partial restoration due to redundant strain in route C makes it least efficient. The model applies generally to materials with a duplex structure, such as NAB and low and medium carbon steels, consisting of a hard and brittle lamellar phase and a softer and ductile matrix phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.A. Culpan, and G. Rose: J. Mater. Sci., 1979, vol. 14, pp. 160-66.

    Google Scholar 

  2. E.A. Culpan: J. Mater. Sci., 1978, vol. 13, pp. 1647-57.

    Article  Google Scholar 

  3. J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, and F.C. Walsh: Corros. Sci., 2005, vol. 47, pp. 3336-67.

    Article  Google Scholar 

  4. B.E. Curry, S.H. Woods: J. Phys. Chem., 1907, vol. 11, pp. 461-491.

    Article  Google Scholar 

  5. M. Cook, W. Fentiman, and E. Davis: J. Inst. Met., 1951, vol. 80, pp. 419-29.

    Google Scholar 

  6. F. Hasan, G.W. Lorimer, and N. Ridley: Met. Sci., 1983, vol. 17, pp. 289-96.

    Article  Google Scholar 

  7. F. Hasan, A. Jahanafrooz, G.W. Lorimer, and N. Ridley, Metall. Trans. A, 1982, vol. 13, pp. 1337-1345.

    Article  Google Scholar 

  8. A. Al-Hashem, and W. Riad: Mater. Charact., 2002, vol. 48, pp. 37-41.

    Article  Google Scholar 

  9. D.R. Ni, B.L. Xiao, Z.Y. Ma, Y.X. Qiao, and Y.G. Zheng: Corros. Sci., 2010, vol. 52, pp. 1610-17.

    Article  Google Scholar 

  10. J.A. Wharton, and K.R. Stokes: Electrochim. Acta, 2008, vol. 53, pp. 2463-73.

    Article  Google Scholar 

  11. J. Wang, S.B. Kang, and H.W. Kim: Mater. Sci. Eng. A, 2004, vol. 383, pp. 356-61.

    Article  Google Scholar 

  12. T. He, Y. Xiong, F. Ren, Z. Guo, and A.A.Volinsky: Mater. Sci. Eng. A, 2012, vol. 535, pp. 306-10.

    Article  Google Scholar 

  13. D.H. Shin, B.C. Kim, K.T. Park, and W.Y. Choo: Acta Mater., 2000, vol. 48, pp. 3245-52.

    Article  Google Scholar 

  14. D.H. Shin, S.Y. Han, K.T. Park, Y.S. Kim, and Y.N. Paik: Mater. Trans., 2003, vol. 44, pp. 1630-35.

    Article  Google Scholar 

  15. L.W. Ma, and K. Xia: Kovove Mater., 2011, vol. 49, pp. 23-27.

    Google Scholar 

  16. R.Z. Valiev, and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881-981.

    Article  Google Scholar 

  17. K.D. Ralston, N. Birbilis, and C.H.J. Davies: Scr. Mater., 2010, vol.63, pp. 1201-04.

    Article  Google Scholar 

  18. M. Haouaoui, I. Karaman, H.J. Maier: Acta Mater., 2006, vol. 54, pp. 5477-5488.

    Article  Google Scholar 

  19. Y.Z. Tian, Q.Q. Duan, H.J. Yang, H.F. Zou, G. Yang, S.D. Wu, and Z.F. Zhang: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2290-303.

    Article  Google Scholar 

  20. C.J. Barr, D.T. McDonald, and K. Xia: J. Mater. Sci., 2013, vol. 48, pp. 4749-4757.

    Article  Google Scholar 

  21. D.T. McDonald, C.J. Barr, and K. Xia: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5556-66.

    Article  Google Scholar 

  22. K. Xia, and J. Wang: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2639-47.

    Article  Google Scholar 

  23. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Phil. Mag. Lett., 2007, vol. 87, pp. 735-41.

    Article  Google Scholar 

  24. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Mater. Sci. Eng. A, 2008, vol. 476, pp. 224-29.

    Article  Google Scholar 

  25. S.J. Jeon, and H.C. Lee: Mater. Sci. Eng. A, 1992, vol. 153, pp. 392-97.

    Article  Google Scholar 

  26. M. Dupeux, and F. Durand: Metall. Trans. A, 1975, vol. 6, pp. 2143-51.

    Article  Google Scholar 

  27. A. Pattnaik, and A .Lawley: Metall. Trans., 1971, vol. 2, pp. 1529-36.

    Google Scholar 

  28. B.J. Shaw: Acta Metall., 1967, vol. 15, pp. 1169-77.

    Article  Google Scholar 

  29. J.R. Lager, and R.R. June: J. Compos. Mater., 1969, vol. 3, pp. 48-56.

    Article  Google Scholar 

  30. B.W. Rosen: Mechanics of Composite Strengthening, Fiber Composite Materials, ASM Metals Park OH 1965, 37.

    Google Scholar 

  31. M.A. Sadowsky, S.L. Pu, and M.A. Hussain: J. Appl. Mech., 1967, vol. 34, pp. 1011-1016.

    Article  Google Scholar 

  32. P.W. Voorhees: J. Stat. Phys., 1985, vol. 38, pp. 232-252

    Article  Google Scholar 

  33. J.C. Kampe, T.H. Courtney, and Y. Leng: Acta Metall., 1989, vol. 37, pp. 1735-56.

    Article  Google Scholar 

  34. T.H. Courtney, and J.C. Kampe: Acta Metall., 1989, vol. 37, pp. 1747-58.

    Article  Google Scholar 

  35. D.R.H. Jones: J Mater. Sci., 1974, vol. 9, pp. 989-92.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Defence Materials Technology Centre (DMTC). The DMTC was established and is supported under the Australian Government’s Defence Future Capability Technology Centres Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenong Xia.

Additional information

Manuscript submitted July 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barr, C.J., McDonald, D.T. & Xia, K. Transformation of Lamellar Structures in Equal Channel Angular Pressing: Geometric Model and Application to Nickel Aluminum Bronze. Metall Mater Trans A 46, 4202–4214 (2015). https://doi.org/10.1007/s11661-015-2994-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2994-1

Keywords

Navigation