Skip to main content
Log in

Evolution of Minor Phases in a 9PctCr Steel: Effect of Tempering Temperature and Relation with Hydrogen Trapping

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of minor phases in ASTM A335 P91 steel has been studied on specimens submitted to different thermal treatments including a tempering step. Particular emphasis has been put on the tempering temperature range 573 K to 873 K (300 °C to 600 °C), which has not been yet intensively studied. The techniques used in this investigation were X-ray diffraction with synchrotron light, scanning electron microscopy with field emission gun and transmission electron microscopy. In the low tempering temperature range [573 K to 673 K (300 °C to 400 °C)], retained austenite, Fe3C and MX precipitates are observed. In the high tempering temperature range [773 K to 1053 K (500 °C to 780 °C)], M23C6-type carbides, MX-type carbonitrides and M2X precipitates are observed. The effect of the microstructure on hydrogen trapping is analyzed. The distorted matrix around the M2X and MX particles provides the most important trap sites in the P91 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, Bridgeport, New Jersey, NJ, 2001, pp. 28-42.

    Book  Google Scholar 

  2. M. Vijayalakshmi and B. Raj: Phase Evolution Diagrams, a new approach to mean metal temperature of ferritic components, Universities Press, Hyderabad, India, 2006, pp. 25-91.

    Google Scholar 

  3. W.B. Jones, C.R. Hills and D.H. Polonis: Metall. Trans. A, 1991, vol. 22A, pp. 1049–1058.

    Article  Google Scholar 

  4. N. Zavaleta-Gutiérrez, M.I. Luppo and C.A. Danón: ISIJ International, 2007, vol. 47, pp. 1178-1187.

    Article  Google Scholar 

  5. J.M. Vitek and R.L. Klueh: Metall. Trans. A, 1983, vol. 14A, pp. 1047-1055.

    Article  Google Scholar 

  6. M. Taneike, K. Sawada and F. Abe, Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255-1262.

    Article  Google Scholar 

  7. K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W.-J. Moon, S. Ozaki, N. Nishimura and Y. Tomokiyo: Mater. Sci. Eng., A, 2004, vol. 374, pp. 82-89.

    Article  Google Scholar 

  8. C. Hurtado Noreña and P. Bruzzoni: Mater. Sci. Eng., A, 2010, vol. 527, pp. 410-416.

    Article  Google Scholar 

  9. Y.Z. Shen, S.H. Kim, H.D. Cho, C.H. Han and W.S. Ryu: Nucl. Eng. Des., 2009, vol. 239, pp. 648–654.

    Article  Google Scholar 

  10. A. Kabadwal, M. Tamura, K. Shinozuka and H. Esaka: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 364-379.

    Article  Google Scholar 

  11. A. Zielinska-Lipiec, A. Czyrska-Filemonowicz, P.J. Ennis and O. Wachter: J. Mater. Process. Technol., 1997, vol. 64, pp. 397-405.

    Article  Google Scholar 

  12. F.B. Pickering and A.D. Vassiliou: Met. Technol., 1980, vol. 7 (1), pp. 409–13.

    Article  Google Scholar 

  13. Y. Sakamoto and U. Hanada: Mater. Trans., 1977, vol. 18, pp. 466–70.

    Google Scholar 

  14. M. Tamura, M.M. Nowell, K. Shinozuka, and H. Esaka: Mater. Trans. JIM, 2006, vol. 47, pp. 1332–40.

    Article  Google Scholar 

  15. C. Hurtado-Noreña, Ph.D. Thesis in Science and Technology, Materials Program. Sabato Institute (CNEA – Gral. San Martín National University), República Argentina, 2012.

  16. N. Boes and H. Züchner: J. Less-Common Met., 1976, vol. 49, pp. 223-240.

    Article  Google Scholar 

  17. P. Villars and L.D. Clavert: Pearson´s Handbook of Crystallographic Data for Intermetallic Phases, 2 nd ed., ASM International, The Materials Information Society, Ohio, OH, 1991.

    Google Scholar 

  18. R.W.H. Honeycombe and H.K.D.K. Bhadeshia: Steels: Microstructure and Properties, 2nd ed., Edward Arnold, London, 1995.

    Google Scholar 

  19. A. Zielinska-Lipiec, A. Czyrska-Filemonowicz, P.J. Ennis and O. Wachter: J. Mat. Proc. Tech., 1997, vol. 64, pp. 397-405.

    Article  Google Scholar 

  20. R.L. Klueh: Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors, Oak Ridge National Laboratory Report ORNL/TM-2004/176, 2004.

  21. F.B. Pickering: in Physikalisch-Technischer Teil, G. Möllenstedt et al., eds., Springer Verlag, Berlin, 1960, pp. 668–70.

  22. G.E. Dieter: Mechanical Metallurgy, 3rd ed. Mc Graw-Hill, United States of America, 1986.

    Google Scholar 

  23. A. McNabb and P.K. Foster: Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 618–27.

    Google Scholar 

  24. A. San-Martin and F.D. Manchester: Bull. Alloy Phase Diagrams, 1990, vol. 11, pp. 173-184.

    Article  Google Scholar 

  25. D. PérezEscobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege: Acta Mater., 2012, vol. 60, pp. 2593–2605.

    Article  Google Scholar 

  26. C. Gesnouin, A. Hazarabedian, P. Bruzzoni, J. Ovejero-García, P. Bilmes and C. Llorente: Corros. Sci., 2004, vol. 46, pp. 1633-1647.

    Article  Google Scholar 

  27. J.W. Martin, R.D. Doherty, and B. Cantor: Stability of Microstructure in Metallic systems, 2nd ed., Cambridge University Press, Cambridge, 1977.

    Google Scholar 

  28. H. Morikawa, H. Komatsu and M. Tanino: J. Electron Microsc., 1973, vol. 22(1), pp. 99-101.

    Google Scholar 

  29. R.G. Baker and J. Nutting: Precipitation Processes in Steels, ISI Special Report, Iron and Steel Institute, London, vol. 64, 1959.

  30. H.M. Lee and S.M. Allen: Metall. Trans., 1991, vol. 22A, pp. 2877-2888.

    Article  Google Scholar 

  31. F.G. Wei and K. Tsuzaki: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 331-353.

    Article  Google Scholar 

  32. F.G. Wei, T. Hara, and K. Tsuzaki: in Effect of Hydrogen on Materials, B. Somerday, P. Sofronis, and R. Jones, eds., ASM International, Materials Park, 2009.

  33. P. Bruzzoni, G. Domizzi, M.I. Luppo, D. Zalcman, and J. Ovejero-García: in Hydrogen Effects in Materials, A.W. Thompson and N.R. Moody, eds., TMS, Pennsylvania, Warrendale, 1996, pp. 1001–09.

Download references

Acknowledgments

The X-ray diffraction measurements have been carried out at the Brazilian Synchrotron Light Laboratory, Campinas, Brazil. This institution provided financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Hurtado-Noreña.

Additional information

Manuscript submitted August 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado-Noreña, C., Danón, C.A., Luppo, M.I. et al. Evolution of Minor Phases in a 9PctCr Steel: Effect of Tempering Temperature and Relation with Hydrogen Trapping. Metall Mater Trans A 46, 3972–3988 (2015). https://doi.org/10.1007/s11661-015-3045-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3045-7

Keywords

Navigation