Skip to main content
Log in

Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Friction-stir welding (FSW) is an alternative welding process for pipelines. This technology offers sound welds, good repeatability, and excellent mechanical properties. However, it is of paramount importance to determine the toughness of the welds at low temperatures in order to establish the limits of this technology. Ductile-to-brittle transition curves were generated in the present study by using a small-scale instrumented Charpy machine and miniaturized V-notch specimens (Kleinstprobe, KLST); notches were located in base metal, heat-affected, stirred, and hard zones within a FSW joint of API-5L X80 Pipeline Steel. Specimens were tested at temperatures between 77 K (−196 °C) and 298 K (25 °C). Based on the results obtained, the transition temperatures for the base material and heat-affected zone were below 173 K (−100 °C); conversely, for the stirred and hard zones, it was located around 213 K (−60 °C). Fracture surfaces were characterized and showed a ductile fracture mechanism at high impact energies and a mixture of ductile and brittle mechanisms at low impact energies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.Y. Shin, B. Hwang, S. Lee, N.J. Kim, and S.S. Ahn: Mater. Sci. Eng. A, 2007, vol. 458, pp. 281-289.

    Article  Google Scholar 

  2. E. Lucon: Testing of Small-Sized Specimens, in Comprehensive Materials Processing, vol. 1, Elsevier Ltd, Pennsylvania, 2014, pp. 135–63.

  3. ASTM: Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM Standard E2298-13a, ASTM, Philadelphia, PA, 2014.

  4. ISO: Steel-Charpy V-Notch Pendulum Impact Test—Instrumented Test Method, ISO Standard 14556, ISO, Geneva, 2000.

  5. ASTM: Standard Test Method for Impact Testing of Miniaturized Charpy V-Notch Specimens, ASTM Standard E2248-13, ASTM, Philadelphia, PA, 2013.

  6. P. Xue, Y. Komizo, R. Ueji, and H. Fujii: Mater. Sci. Eng. A, 2014, vol. 606, pp. 322–329.

    Article  Google Scholar 

  7. S.H. Nahm, A. Kim, and J. Park: Int J Impact Eng, 2001, vol. 2001, pp. 805–816.

    Article  Google Scholar 

  8. H.S. Cho, H. Ohkubo, N. Iwata, A. Kimura, S. Ukai, and M. Fujiwara: Fusion Eng. Des., 2006, vol. 81, pp. 1071–1076.

    Article  Google Scholar 

  9. ISO: Petroleum and Natural Gas Industries-Steel Pipe for Pipeline Transportation Systems, ISO Standard 3183, ISO, Geneva, 2007.

  10. F.C.L. Passagem: Master’s thesis, Universidade de São Paulo, São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-05042011-140912/pt-br.php (in Portuguese).

  11. P.J. Konkol and M.F. Mruczek: Weld. J. (Miami, FL, USA), 2007, vol. 86, pp. 187s–95s.

  12. T.F. Santos, T.F. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, and A.J. Ramirez: Eng. Fract. Mech., 2010, vol. 77, pp. 2937–2945.

    Article  Google Scholar 

  13. J.A.D. Ávila, C.O.F.T. Ruchert, P.R. Mei, R.M. Reppold, M.T.P. Piza, and A.J. Ramirez: Eng. Fract. Mech., 2015, vol. 147, pp. 176–186.

    Article  Google Scholar 

  14. ASTM: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM Standard E23-12c, ASTM, Philadelphia, PA, 2013.

  15. E. Lucon: J. Test. Eval., 2001, vol. 41, pp. 1–9.

    Google Scholar 

  16. W.J. Kyffin: TWI Industrial Member Report Summary 880/2007, The Welding Institute, Cambridge, 2007.

    Google Scholar 

  17. D.P. Fairchild, A. Kumar, S.J. Ford, N. Nissley, R. Ayer, H.W. Jin, and A. Ozekcin: Proc. Trends Weld. Res. 8th Int. Conf. Pine Mountain, GA, 2009, pp. 371–80.

  18. A. Tribe: Master’s thesis, Brigham Young University, Provo, Utah, 2012. http://scholarsarchive.byu.edu/etd/3740/.

  19. H. Aydin and T.W. Nelson: Mater. Sci. Eng. A, 2013, vol. 586, pp. 313–322.

    Article  Google Scholar 

  20. G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937–945.

    Article  Google Scholar 

  21. H. Kyung-Sung, D. Ho-Lee, S. Yong-Shin, S. Lee, J. Yong-Yoo, and B. Hwang: Mater. Sci. Eng. A, 2015, vol. 624, pp. 14–22.

    Article  Google Scholar 

  22. J.S. Kang, J.-B. Seol, and C.G. Park: Mater. Charact., 2013, vol. 79, pp. 110–121.

    Article  Google Scholar 

  23. M.F. Sinfield: Ph.D. thesis, The Ohio State University, Columbus, OH, 2007. https://etd.ohiolink.edu/!etd.send_file?accession=osu1143252009&disposition=inline.

  24. H. Aydin: Mater. Technol., 2014, vol. 48, pp. 15–22.

    Google Scholar 

  25. H.-H. Cho, S.H. Kang, S.-H. Kim, K.H. Oh, H.J. Kim, W.-S. Chang, and H.N. Han: Mater. Des., 2012, vol. 34, pp. 258–267.

    Article  Google Scholar 

  26. X. Li, X. Ma, S. V. Subramanian, and C. Shang: Int. J. Fract., 2015, vol. 193, pp. 131–139.

    Article  Google Scholar 

  27. S.Y. Han, S.Y. Shin, S. Lee, N.J. Kim, J. Bae, and K. Kim: Metall. Mater. Trans. A., 2010, vol. 41A, pp. 239–251.

    Google Scholar 

  28. X. Zhang, H. Gao, X. Zhang, and Y. Yang: Mater. Sci. Eng. A., 2012, vol. 531, pp. 84–90.

    Article  Google Scholar 

  29. M. de C. Silva: Master’s thesis, Universidade de São Paulo, Sao Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-11022005-162828/pt-br.php (in Portuguese).

  30. M.A. Sokolov and D.J. Alexander: improved correlation procedure for subsize and full-size charpy impact specimen data, NUREG/CR-6379, ORNL-6888, Oak Ridge National Laboratory, Oak Ridge, TN, 1997.

    Book  Google Scholar 

  31. W. Oldfield, ASTM Standardisation News, 1975, vol. 3, pp. 24-29.

    Google Scholar 

  32. R. Schill, P. Forget, and C. Sainte-Catherine: Thirteen. Eur. Conf. Fract. Sebastián, 2000, pp. 1–8.

  33. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edn, p. 640, CRC Press, Boca Raton, 2005.

    Google Scholar 

  34. C. Sainte Catherine, C. Poussard, J. Vodinh, R. Schill, N. Hourdequin, P. Galon, and P. Forget: Finite Element Simulations and Empirical Correlation for Charpy-V and Subsize Charpy Tests on an Unirradiated Low-Alloy RPV Ferritic Steel, ASTM STP 1418, M.A, Sokolov, J.D. Landes and G.E. Lucas, Eds., ASTM, Philadelphia, PA, 1990, pp. 107–36.

  35. K. Dohi, N. Soneda, T. Onchi, and H. Matsui: Correlation Between Subsize and Full-Size Charpy Impact Properties of Neutron-Irradiated Reactor Pressure Vessel Steels, ASTM STP 1418, M.A, Sokolov, J.D. Landes, and G.E. Lucas, Eds., ASTM, Philadelphia, PA, 1990, pp. 137–50.

  36. E. Lucon, R. Chaouadi, A. Fabry, J.-L. Puzzolante, and E. Van Characterizing: Material Properties by the Use of Full-Size and Subsize Charpy Tests: An Overview of Different Correlation Procedures, ASTM STP 1380, T.A. Siewert and M.P. Manahan, Eds., ASTM, Philadelphia, PA, 2000, pp. 146–63.

  37. A. Lakshminarayanan, V. Balasubramanian, M. Salahuddin: J. Iron Steel Res. Int., 2010, vol. 17, pp. 68–74.

    Article  Google Scholar 

  38. H.G. Hillenbrand, M. Graf, and C. Kalwa: Int. Symp. Niobium, Orlando, FL, 2002, pp. 543–69.

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Colciencias by the Scholarship No. 512 from 2010. We would like to thank the following institutions: Petrobras, NIST, and LNNano/CNPEM for providing funding and laboratory facilities where this work was developed; and TenarisConfab for the materials donation. Special thanks are due to Chris McCowan (NIST) for his useful suggestions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Ramirez.

Additional information

Enrico Lucon is employed by Protiro, Inc. contractor to the National Institute of Standards and Technology. Jeffrey Sowards is employed by the National Institute of Standards and Technology. U.S. Government work is not protected by U.S. Copyright.

Manuscript submitted July 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, J.A., Lucon, E., Sowards, J. et al. Assessment of Ductile-to-Brittle Transition Behavior of Localized Microstructural Regions in a Friction-Stir Welded X80 Pipeline Steel with Miniaturized Charpy V-Notch Testing. Metall Mater Trans A 47, 2855–2865 (2016). https://doi.org/10.1007/s11661-016-3473-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3473-z

Keywords

Navigation