Skip to main content
Log in

Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A coarse-grained (order of 1 mm) Ti-5553 metastable beta alloy was subjected to multiple passes of low-temperature forging and multiple forging plus annealing cycles, respectively. In the forging only processing, strain was concentrated in the shear bands formed and accumulated with each forging pass, resulting in a heterogeneous microstructure and eventual cracking along the shear bands. In contrast, the introduction of a short beta annealing after each forging step led to fine recrystallized grains (50 to 100 µm) formed in the shear bands, and a uniformly refined beta grain structure after four cycles. This is attributed to the strengthening effect of the fine grains, causing redistribution of most severe strains to the coarse grain region in the subsequent forging, consistent with the simulated results by finite element analysis. The analyses of the microstructures and simulated strain distributions revealed that the critical strain for recrystallization is between 0.2 and 0.5 and the strain to fracture to be ~0.8 to 0.9. The fine-grained (50 to 100 µm) beta alloy, however, fractured at a much smaller strain of <0.4 during the next forging step, owing to the formation of stress-induced martensitic α″ which is more prevalent in fine grains than in coarse ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. T.W. Duerig and J.C. Williams: Beta Titanium Alloys in the 80s, R. Boyer and H.W.Rosenberg, eds., Metallurgical Society of AIME, Atlanta, GA, United States, 1984, pp. 19–67.

  2. [2] F. H. Froes and H. B. Bomberger: JOM, 1985, vol. 37 (7), pp. 28-37.

    Article  Google Scholar 

  3. [3] I. Weiss and S. L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46-65.

    Article  Google Scholar 

  4. [4] H. Oikawa, K. Nishimura, and M.X. Cui: Scr. Metall., 1985, vol. 19, pp. 825-28.

    Article  Google Scholar 

  5. [5] B. Ru-qiang, X. Huang, and C. Chun-xiao Cao: Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 274-80.

    Article  Google Scholar 

  6. [6] V. V. Balasubrahmanyam and Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2002, vol. 336, pp. 150-58.

    Article  Google Scholar 

  7. [7] Y. Liu and T.N. Baker: Mater. Sci. Eng. A, 1995, vol. 197, pp. 125-31.

    Article  Google Scholar 

  8. [8] N. E. W. De Reca and C. M. Libanati: Acta Metall., 1968, vol. 16, pp. 1297-305.

    Article  Google Scholar 

  9. [9] F. Dyment and C. M. Libanati: J. Mater. Sci., 1968, vol. 3, pp. 349-59.

    Article  Google Scholar 

  10. [10] G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, M F. X. Gigliotti, B. P. Bewlay, and C. U. Hardwicke: J. Mater. Eng. Perform., 2005, vol. 14, pp. 709-16.

    Article  Google Scholar 

  11. [11] I. Weiss, F. H. Froes, D. Eylon, and G. E. Welsch: Metall. Trans. A, 1986, vol. 17A, pp. 1935-47.

    Article  Google Scholar 

  12. [12] G. A. Salishchev, O. R. Valiakhmetov, and R. M. Galeyev: J. Mater. Sci., 1993, vol. 28, pp. 2898-902.

    Article  Google Scholar 

  13. [13] C. H. Park, K. T. Park, D. H. Shin, and C. S. Lee: Mater. Trans., 2008, vol. 49, pp. 2196-200.

    Article  Google Scholar 

  14. [14] R. Berghammer, H. Weiping, A. Hasani, and G. Gottstein: Adv. Eng. Mater., 2011, vol. 13, pp. 232-36.

    Article  Google Scholar 

  15. [15] V. V. Balasubrahmanyam and Y.V.R.K. Prasad: Mater. Sci. Tech., 2001, vol. 17, pp. 1222-28.

    Article  Google Scholar 

  16. [16] T. H. Schofield and A. E. Bacon: Acta Metall., 1961, vol. 9, pp. 653-69.

    Article  Google Scholar 

  17. [17] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp.130-207.

    Article  Google Scholar 

  18. [18] H. Matsumoto, M. Kitamura, Y. Li, Y. Koizumi, and A. Chiba: Mater. Sci. Eng. A, 2014, vol. 611, pp. 337-44.

    Article  Google Scholar 

  19. [19] F. Sun, T. Gloriant, P. Vermaut, P. Jacques, and F. Prima: Solid State Phenom., 2011, vol. 172-174, pp. 129-34.

    Article  Google Scholar 

  20. [20] M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P. J. Jacquesa, and F. Primab: Scr. Mater., 2012, vol. 66, pp. 749-52.

    Article  Google Scholar 

  21. [21] Q. Y. Sun, J. Song, R. H. Zhu, and H. C. Gu: J. Mater. Sci., 2002, vol. 37, pp. 2543-47.

    Article  Google Scholar 

  22. [22] W. Xu, K. B. Kim, J. Das, M. Calin, B. Rellinghaus, and J. Eckert: Appl. Phys. Lett., 2006, vol. 89, pp. 031906-1‒3.

    Google Scholar 

  23. [23] W. Xu, X. Wu, R. B. Figueiredo, M. Stoica, M. Calin, J. Eckert, T. G. Langdon, and K. Xia: Int. J. Mater. Res., 2009, vol. 100, pp. 1662-67.

    Article  Google Scholar 

  24. [24] A. Zafari, X. S. Wei, W. Xu, and K. Xia: Acta Mater., 2015, vol. 97, pp. 146-55.

    Article  Google Scholar 

  25. [25] W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia: Scr. Mater., 2009, vol. 60, pp. 1012-15.

    Article  Google Scholar 

  26. [26] A. Bhattacharjee, S. Bhargava, V. K. Varma, S. V. Kamat, and A. K. Gogia: Scr. Mater., 2005, vol. 53, pp. 195-200.

    Article  Google Scholar 

  27. [27] T. W. Duerig, J. Albrecht, D. Richter, and P. Fischer: Acta Metall., 1982, vol. 30, pp. 2161-72.

    Article  Google Scholar 

  28. [28] E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  29. [29] N. J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    Google Scholar 

  30. [30] A. Bhattacharjee, V. K. Varama, S. V. Kamat, A. K. Gogia, and S. Bhargava: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1423-33.

    Article  Google Scholar 

  31. [31] H. P. Stüwe: Adv. Eng. Mater., 2003, vol. 5, pp. 291-95.

    Article  Google Scholar 

  32. [32] Y. B. Chun, S. L. Semiatin, and S. K. Hwang: Acta Mater., 2006, vol. 54, pp. 3673-89.

    Article  Google Scholar 

  33. [33] B. Han and Z. Xu: Mater. Sci. Eng. A, 2007, vol. 447, pp. 119-24.

    Article  Google Scholar 

  34. [34] V. M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157-64.

    Article  Google Scholar 

  35. [35] A. Gholinia, F. J. Humphreys, and P. B. Prangnell: Acta Mater., 2002, vol. 50, pp. 4461-76.

    Article  Google Scholar 

  36. [36] J. Huang and Z. Xu: Mater. Lett., 2006, vol. 60, pp. 1854-58.

    Article  Google Scholar 

  37. [37] B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, 1989, vol. 113, pp. 385-97.

    Article  Google Scholar 

  38. [38] N. Hansen and D. A. Hughes: Phys. Stat. Sol., 1995, vol. 149, pp. 155-72.

    Article  Google Scholar 

  39. R.A. Vandermeer and P.Gordon: in Recovery and Recrystallization of Metals, L. Himmel, ed., Interscience, New York, 1963, pp. 211–38.

  40. [40] J. E. Burke and D. Turnbull: Prog. Met. Phys., 1952, vol. 3, pp. 220-92.

    Article  Google Scholar 

  41. [41] M. Hillert: Acta Metall., 1965, vol. 13, pp. 227-38.

    Article  Google Scholar 

  42. [42] R. Sandsttröm: Acta Metall., 1977, vol. 25, pp. 905-11.

    Article  Google Scholar 

  43. [43] H. V. Atkinson: Acta Metall., 1988, vol. 36, pp. 469-91.

    Article  Google Scholar 

  44. [44] K. Lücke and K. Detert: Acta Metall., 1957, vol. 5, pp. 628-37.

    Article  Google Scholar 

  45. [45] J. W. Cahn: Acta Metall., 1962, vol. 10, pp. 789-98.

    Article  Google Scholar 

  46. [46] S. L. Semiatin, J. C. Soper, and I. M. Sukonnik: Scr. Metall. et Mater., 1994, vol. 30, pp. 951-55.

    Article  Google Scholar 

  47. [47] S. L. Semiatin, J. C. Soper, and I. M. Sukonnik: Acta Mater., 1996, vol. 44, pp. 1979-86.

    Article  Google Scholar 

  48. [48] S. L. Semiatin, P. N. Fagin, M. G. Glavicic, I. M. Sukonnik, and O. M. Ivasishin: Mater. Sci. Eng. A, 2001, vol. 299, pp. 225-34.

    Article  Google Scholar 

  49. [49] R. W. Armstrong: Metall. Mater. Trans. B, 1970, vol. 1, pp. 1169-76.

    Google Scholar 

  50. [50] K. S. Chan: Scr. Metall. Mater., 1990, vol. 24, pp. 1725-30.

    Article  Google Scholar 

  51. [51] A. Lasalmonie and J. L. Strudel: J. Mater. Sci., 1986, vol. 21, pp. 1837-52.

    Article  Google Scholar 

  52. [52] A. W. Bowen: Scr. Metall., 1971, vol. 5, pp. 709-15.

    Article  Google Scholar 

  53. [53] J. C. Williams, B.S. Hickman, and H. L. Marcus: Metall. Mater. Trans. B, 1971, vol. 2B, pp. 1913-19.

    Google Scholar 

  54. [54] S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwanga, M. Harper, and H. L. Fraser: Acta Mater., 2009, vol. 57, pp. 2136-47.

    Article  Google Scholar 

  55. [55] F. Prima, P. Vermaut, G. Texier, D. Ansel, and T. Gloriant: Scr. Mater., 2006, vol. 54, pp. 645-48.

    Article  Google Scholar 

  56. [56] B. S. Hickman: J. Mater. Sci., 1969, vol. 4, pp. 554-63.

    Article  Google Scholar 

  57. [57] M. Petrzhik: JPCS, 2013, vol. 438, pp. 012020-1‒5.

    Google Scholar 

  58. [58] W. Xu, D. P. Edwards, X. Wu, M. Stoica, M. Calin, U. Kühn, J. Eckert, and K. Xia: Scr. Mater., 2013, vol. 68, pp. 67-70.

    Article  Google Scholar 

  59. C. Zener: in Fracturing of Metals, G. Sachs and C. Zener, eds., ASM, Chicago, 1948, pp. 3–31.

  60. [60] J. K. Koehler: Phys. Rev., 1952, vol. 85, pp. 480-1.

    Article  Google Scholar 

  61. [61] A. N. Stroh: Adv. Phys., 1957, vol. 6, pp. 418-65.

    Article  Google Scholar 

  62. [62] R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov: Prog. Mater. Sci., 2000, vol.45, pp. 103-89.

    Article  Google Scholar 

  63. [63] K. Xia, J. T. Wang, X. Wu, G. Chen, and M. Gurvan: Mater. Sci. Eng. A, 2005, vol. 410, pp. 324-27.

    Article  Google Scholar 

Download references

Acknowledgment

This investigation is partially supported by the ARC Centre of Excellence for Design in Light Metals and the Australia-China Research Centre for Light Metals. AZ acknowledges the receipt of a University of Melbourne postgraduate scholarship and YD the financial support from the Chinese Scholarship Council. AZ is grateful for useful discussions with Dr. Wei Xu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Zafari or Kenong Xia.

Additional information

Manuscript submitted December 21, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafari, A., Ding, Y., Cui, J. et al. Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles. Metall Mater Trans A 47, 3633–3648 (2016). https://doi.org/10.1007/s11661-016-3496-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3496-5

Keywords

Navigation