Skip to main content
Log in

Physical Simulation of a Duplex Stainless Steel Friction Stir Welding by the Numerical and Experimental Analysis of Hot Torsion Tests

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Physical simulation of friction stir welding (FSW) by means of hot torsion tests was performed on UNS S32205 duplex stainless steel. A thermomechanical simulator Gleeble 3800® with a custom-built liquid nitrogen cooling system was employed to reproduce the thermal cycle measured during FSW and carry out the torsion tests. Microstructures were compared by means of light optical microscopy and electron backscatter diffraction. True strain and strain rate were calculated by numerical simulation of the torsion tests. Thermomechanically affected zone (TMAZ) was reproduced at peak temperature of 1303 K (1030 °C), rotational speeds of 52.4 rad s−1 (500 rpm) and 74.5 rad s−1 (750 rpm), and 0.5 to 0.75 revolutions, which represent strain rate between 10 and 16 s−1 and true strain between 0.5 and 0.8. Strong grain refinement, similar to the one observed in the stir zone (SZ), was attained at peak temperature of 1403 K (1130 °C), rotational speed of 74.5 rad s−1 (750 rpm), and 1.2 revolution, which represent strain rate of 19 s−1 and true strain of 1.3. Continuous dynamic recrystallization in ferrite and dynamic recrystallization in austenite were observed in the TMAZ simulation. At higher temperature, dynamic recovery of austenite was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.S. Mishra and M.W. Mahoney: Friction Stir Welding and Processing, ASM International, Ohio, 2007.

    Google Scholar 

  2. M. Ghosh, K. Kumar, and R.S. Mishra: Scr. Mater., 2010, vol. 63, pp. 851-854.

    Article  Google Scholar 

  3. Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, and C.-O. Petterson: Mater. Sci. Eng. A, 2005, vol. 397, pp. 376-384.

    Article  Google Scholar 

  4. P. Edwards and M. Ramulu: Sci. Technol. Weld. Join., 2010, vol. 15, no. 6, pp. 468-472.

    Article  Google Scholar 

  5. T.F.A. Santos, H.S. Idagawa, and A.J. Ramirez: Sci. Technol. Weld. Joining, 2014, vol. 19, no. 2, pp. 150-156.

    Article  Google Scholar 

  6. K. Kuykendall, T. Nelson, and C. Sorensen: Int. J. Mach. Tool Manu., 2013, vol. 74, pp. 74-85.

    Article  Google Scholar 

  7. H.W. Zhang, Z. Zhang, and J.T. Chen: Mater. Sci. Eng. A, 2005, vol. 403, pp. 340-348.

    Article  Google Scholar 

  8. H. Schmidt and J. Hattel: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 77-93.

    Article  Google Scholar 

  9. H.W. Zhang, Z. Zhang, and J.T. Chen: J. Mater. Process. Technol., 2007, vol. 183, pp. 62-70.

    Article  Google Scholar 

  10. L. Fratini, G. Buffa, D. Palmeri: Comput. Struct., 2009, vol. 87, pp. 1166-1174.

    Article  Google Scholar 

  11. R. Hamilton, D. MacKenzie, and H. Li: International Journal for Computer-Aided Engineering and Software, 2010, vol. 27, no. 8, pp. 967-985.

    Article  Google Scholar 

  12. M. Assidi, L. Fourment, S. Guerdoux, and T. Nelson: International Journal of Machine Tools & Manufacture, 2010, vol. 50, pp. 143-155.

    Article  Google Scholar 

  13. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, and D. Allehaux: J. Mater. Process. Technol., 2006, vol. 171, pp. 348-357.

    Article  Google Scholar 

  14. R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy: Acta Mater., 2007, vol. 55, pp. 883-895.

    Article  Google Scholar 

  15. A. Arora, Z. Zhang, A. De, and T. DebRoy: Scr. Mater., 2009, vol. 61, pp. 863-866.

    Article  Google Scholar 

  16. D. Kim, H. Badarinarayan, J.H. Kim, C. Kim, K. Okamoto, R.H. Wagoner, and K. Chung: Eur. J. Mech. A Solids, 2010, vol. 29, pp. 204-215.

    Article  Google Scholar 

  17. D. Forrest, J. Nguyen, M. Posada, J. DeLoach, D. Boyce, J. Cho, and P. Dawson: Proceedings of the 7th International Conference on Trends in Welding Research, S.A. David, ed., ASM International, 2006, pp. 279–86.

  18. S.J. Norton: Ph.D. Thesis, The Ohio State University, Columbus, 2006.

  19. M.F. Sinfield: M.Sc. Thesis, The Ohio State University, Columbus, 2007.

  20. D.M. Failla: M.Sc. Thesis, The Ohio State University, Columbus, 2009.

  21. M.J. Rubal: M.Sc. Thesis, The Ohio State University, Columbus, 2009.

  22. J.R. Rule and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3649-3663.

    Article  Google Scholar 

  23. T. Saeid, A. Abdollah-zadeh, H. Assadi, and F. Malek Ghaini: Mater. Sci. Eng. A, 2008, vol. 496, pp. 262-268.

    Article  Google Scholar 

  24. T.F.A. Santos, R.R. Marinho, M.T.P. Paes, A.J. Ramirez: REM, 2013, vol. 66, no. 2, pp. 187-191.

    Google Scholar 

  25. R.N. Gunn: Duplex Stainless Steels: microstructure, properties and applications, Abington Publishing, Cambridge, 2003.

    Google Scholar 

  26. I. Alvarez-Armas and S. Degallaix-Moreuil, eds: Duplex Stainless Steel, ISTE, London, 2009.

    Google Scholar 

  27. A. Iza-Mendia, A. Pinol-Juez, J.J. Urcola, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2975-2986.

    Article  Google Scholar 

  28. H. Farnoush, A. Momeni, K. Dehghani, J. AghazadehMohandesi, and H. Keshmiri: Mater. Des. 2010, vol. 31, pp. 220-226.

    Article  Google Scholar 

  29. P. Cizek: Acta Mater., 2016, vol. 106, pp. 129-143.

    Article  Google Scholar 

  30. E. Evangelista, H.J. McQueen, M. Niewczas and M. Cabibbo: Can. Metall. Q., 2004, vol. 43, no. 3, pp. 339-354.

    Article  Google Scholar 

  31. P. Cizek, B.P. Wynne: Mater. Sci. Eng. A, 1997, vol. 230, pp. 88-94.

    Article  Google Scholar 

  32. F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, Elsevier, Oxford, 2004.

    Google Scholar 

  33. T.F.A. Santos, E.A.T. Lopez, E.B. Fonseca, A.J. Ramirez: Mater. Res., 2016, vol. 19(1), pp. 117-131.

    Article  Google Scholar 

  34. T.F.A. Santos: Ph.D. Thesis, University of Campinas, Campinas, 2012 (in Portuguese).

  35. A. Hansel, T. Spittel, Kraft- und Arbeitsbedarf bildsamer. Formgeburgsverfahren, VEB DeutscherVerlag fur Grundstoffindustrie, Leipzig, 1978

    Google Scholar 

  36. T. Saeid, A. Abdollah-zadeh, T. Shibayanagi, K. Ikeuchi, and H. Assadi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6484-6488.

    Article  Google Scholar 

  37. J.C. Lippold and J.J. Livingston: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3815-3825.

    Article  Google Scholar 

  38. S.S. Babu, J. Livingston, and J.C. Lippold: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3577-3591.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge FAPESP and CNPq for scholarships and Aperam for material donation. Research supported by Petrobras and ANP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bertoni da Fonseca.

Additional information

Manuscript submitted February 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fonseca, E.B., Santos, T.F.A., Button, S.T. et al. Physical Simulation of a Duplex Stainless Steel Friction Stir Welding by the Numerical and Experimental Analysis of Hot Torsion Tests. Metall Mater Trans A 47, 4543–4552 (2016). https://doi.org/10.1007/s11661-016-3631-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3631-3

Keywords

Navigation