Skip to main content
Log in

Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Shahzad, A.H. Qureshi, H. Waqas, N Hussain: Mater. Des., 2011, vol. 32, pp. 5154–58.

    Article  Google Scholar 

  2. R.S. Mishra, Z.Y Ma: Mater. Sci. Eng. R., 2005 50: 1–78.

    Article  Google Scholar 

  3. R. Nandan, T. Debroy, H.K.D.H. Bhadeshia: Prog. Mater Sci., 2008, vol. 53, pp. 980–1023.

    Article  Google Scholar 

  4. K. Colligan: Weld. J., 1999, pp. 229–37

    Google Scholar 

  5. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.

    Article  Google Scholar 

  6. H.K.D.H. Bhadeshi, T. Debroy: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 193-196.

    Article  Google Scholar 

  7. P.B Prangnell, C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179–92.

    Article  Google Scholar 

  8. Q. Guo, D. Li, S. Guo, H. Peng, J. Hu: J. Nucl. Mater., 2011, vol. 414, pp. 440–50.

    Article  Google Scholar 

  9. A. Momeni, K. Dehghani: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1448–54.

    Article  Google Scholar 

  10. D.P Field, T.W. Nelson, Y. Hovanski, K.V Jata: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2869–77.

    Article  Google Scholar 

  11. R.W. Fonda, J.F Bingert: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1487–99.

    Article  Google Scholar 

  12. R.W. Fonda, J.F Bingert: Metall. Mater. Trans. A, 2006, vol. 37, pp. 3593–604.

    Article  Google Scholar 

  13. R.W. Fonda, J.F Bingert: Scr. Mater., 2007, vol. 57, pp. 1052–55.

    Article  Google Scholar 

  14. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1962–69.

    Article  Google Scholar 

  15. K. Oh-Ishi, A.P. Zhilyaev, T.R. McNelley: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2239–51.

    Article  Google Scholar 

  16. R.W. Fonda, K.E. Knipling: Sci. Technol. Weld. Join., 2011, vol. 4, pp. 288–94.

    Article  Google Scholar 

  17. S. Mironov, Y.S Sato, H. Kokawa: Acta Mater., 2008, vol. 56, pp. 2602–14.

    Article  Google Scholar 

  18. . Rodriguez, A.J. Ramirez: Sci. Technol. Weld. Joining, 2014, vol. 19 4, pp. 343–49.

    Article  Google Scholar 

  19. T.J. Lienert, J.R. Stellwag, B.B. Grimmett, R.W. Warke: Weld J. 2003, 82: pp. 1S–9S

    Article  Google Scholar 

  20. H. Fujii, L. Cui, M. Maeda, K. Nakata, K. Nogi: Mater. Sci. Eng. A, 2006, vol. 429, pp. 50–57.

    Article  Google Scholar 

  21. J. Rodriguez, A.J. Ramirez: Mater. Charact., 2015, vol. 110, pp. 126–35.

    Article  Google Scholar 

  22. R. El-Koussy, V.P. Polukhin: J. Mech. Work. Tech., 1978, vol. 2, pp. 145–60.

    Article  Google Scholar 

  23. S. Nafisi, M.A Arafin, L. Collins, J. Szpunar: Mater. Sci. Eng. A, 2012, vol. 531, pp. 2–11.

    Article  Google Scholar 

  24. U.F. Kocks, C.N. Tomé, H.R. Wenk: Texture and anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties. Cambridge University Press: Cambridge 2005, p. 184.

    Google Scholar 

  25. R.S. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861–72.

    Article  Google Scholar 

  26. X.L. Li, W. Liu, A. Godfrey, D. Juul Jensen, Q. Liu. Acta Mater., 2007, vol. 55, pp 3531–40

    Article  Google Scholar 

  27. A.M. Elwazri, P. Wanjara, S. Yue: Mater. Sci. Eng. A, 2003, vol. 339, pp. 209–15.

    Article  Google Scholar 

  28. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664–72.

    Article  Google Scholar 

  29. D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu: Mater. Des., 2011, vol. 32, pp. 696–705.

    Article  Google Scholar 

  30. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena. Second Edition. Elsevier: Amsterdam 2004.

    Google Scholar 

  31. N.M. Lopez, A. Salinas. J Iron Steel Res Int., 2016, vol 23(3), pp. 261–69.

    Article  Google Scholar 

  32. I. Kestens, J.J. Jonas. In: ASM Handbook, Volume 14A. Transformation and Recrystallization Textures Associated with Steel Processing. 9th Edition. ASM International. 2005.

  33. B. Nelson, C. Soresen: Friction stir welding and processing VI. The Minerals, Metals & Materials Society, 2011, pp. 113–20.

  34. G.E. Dieter. Mechanical Metallurgy. New York, McGraw-Hill, 1988.

    Google Scholar 

  35. Y. Sato, T.W. Nelson, C.J. Sterling. Acta Mater., 2005, vol, 53, pp. 637–45.

    Article  Google Scholar 

  36. Y. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, T. Hashimoto: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 941–48.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Petrobras (Contract Number 0050.0050438.09.9) for financial support along with the Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Richard W. Fonda from the Naval Research Laboratory and Hamilton FG Abreu from the Federal University of Ceará for the helpful research discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Ramirez.

Additional information

Manuscript submitted March 29, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, J.R., Ramirez, A.J. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625. Metall Mater Trans A 48, 1092–1102 (2017). https://doi.org/10.1007/s11661-016-3925-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3925-5

Keywords

Navigation