Skip to main content
Log in

Grain Growth in Nanocrystalline Mg-Al Thin Films

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Gleiter: Nanocrystalline materials, 1989, vol. 33, p. 223-315.

    Google Scholar 

  2. C. C. Koch, I. A. Ovidko, S. Seal and S. Veprek: Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, Cambridge, 2007, pp. 93-113.

    Book  Google Scholar 

  3. S. Simoes, R. Calinas, M. T. Vieira, M. F. Vieira, P. J. Ferreira: Nanotechnology, 2010, vol. 21, pp. 145701.

    Article  Google Scholar 

  4. A. Gangulee, S. Krongelb, G. Das: Thin Solid Films, 1974, vol. 24, pp. 273-277.

    Article  Google Scholar 

  5. M. C. Iordache, S. H. Whang, Z. Jiao, Z. M. Wang,: Nanostructured Materials, 1999, vol.11, pp. 1343-1349.

    Article  Google Scholar 

  6. M. Thein, L. Lu, M. Lai: Composites Science and Technology, 2006, vol. 66, pp. 531-537.

    Article  Google Scholar 

  7. R. Dannenberg, E. Stach, J. R. Groza, B. J. Dresser: Thin Solid Films, 2000, vol. 379, pp. 133-138.

    Article  Google Scholar 

  8. P. Cao, L. Lu, M. O. Lai: Materials Research Bulletin, 2001, vol. 36, pp. 981-988.

    Article  Google Scholar 

  9. T. R. Malow, C. C. Koch, Acta Materialia, 1997, vol. 45, pp. 2177-2186.

    Article  Google Scholar 

  10. T. R. Malow, C. C. Koch, Synthesis and Processing of Nanocrystalline Powder, TMS, Warrendale, 1996, pp. 33-44.

    Google Scholar 

  11. W. F. Powers: Advanced materials and processes, 2000, vol. 157, pp. 38-42.

    Google Scholar 

  12. E. Contreras-Piedras, R. Esquivel-Gonzalez, V. M. López-Hirata, M. L. Saucedo-Muñoz, A. M. Paniagua-Mercado, H. J. Dorantes-Rosales: Materials Science and Engineering: A, 2010, vol. 527, pp. 7775-7778.

    Article  Google Scholar 

  13. M. X. Zhang, P. M. Kelly: Scripta Materialia, 2003, vol. 48, pp. 647-652.

    Article  Google Scholar 

  14. J. P. Zhou, D. S. Zhao, R. H. Wang, Z. F. Sun, J. B. Wang, J. N. Gui, O. Zheng: Materials Letters, 2007, vol. 61, pp. 4707-4710.

    Article  Google Scholar 

  15. K. N. Braszczyńska-Malik: Journal of Alloys and Compounds, 2009, vol. 477, pp. 870-876.

    Article  Google Scholar 

  16. E. Cerri, S. Barbagall: Materials Letters, 2002, vol. 56, pp. 716-720.

    Article  Google Scholar 

  17. Y. Wang, G. Liu, Z. Fan: Acta Materialia, 2006, vol. 54, pp. 689-699.

    Article  Google Scholar 

  18. Q. Miao, L. Hu, X. Wang, E. Wang: Journal of Alloys and Compounds, 2010, vol. 493, pp. 87-90.

    Article  Google Scholar 

  19. J. J. Bhattacharyya, S. R. Agnew, G. Muralidharan: Acta Materialia, 2015, vol. 86, pp. 80-94.

    Article  Google Scholar 

  20. K. Kulkarni, A. Luo: Journal of Phase Equilibria and Diffusion, 2013, vol. 34, pp. 104-115.

    Article  Google Scholar 

  21. C. H. Cáceres, W. J. Poole, A. L. Bowles, C. J. Davidson: Materials Science and Engineering: A, 2005, vol. 402, pp. 269-277

    Article  Google Scholar 

  22. A. F. Crawley, K. S. Milliken: Acta Metallurgica, 1974, vol. 22, pp. 557-562.

    Article  Google Scholar 

  23. K. Kruska, S. Lozano-Perez, D. W. Saxey, T. Terachi, T. Yamada, G. D. W. Smith: Corrosion Science, 2012, vol. 63, pp. 225-233.

    Article  Google Scholar 

  24. J. E. Burke, D. Turnbull: Progress in Metal Physics, 1952, vol. 3, pp. 220-292.

    Article  Google Scholar 

  25. J. S. Huang, J. Zhang, A. Cuevas, K. N. Tu: Materials Chemistry and Physics, 1997, vol. 49, pp. 33-41.

    Article  Google Scholar 

  26. V. Y. Novikov: Scripta Materialia, 1998, vol. 39, pp. 945-949.

    Article  Google Scholar 

  27. H. J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, 1983, p. 44.

    Google Scholar 

  28. C. V. Thompson, Annual Review of Materials Science, 2000, vol. 30, pp. 159-190.

    Article  Google Scholar 

  29. D. S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, K. J. Hemker: Acta Materialia, 2006, vol. 54, pp. 2253-2263.

    Article  Google Scholar 

  30. X. Wang, L. Hu, K. Liu, Y. Zhang: Journal of Alloys and Compounds, 2012, vol. 527, pp. 193-196.

    Article  Google Scholar 

  31. M. M. Avedesian, H. Baker: Magnesium and Magnesium Alloys, ASM Specialty Handbook, Vol. 27, ASM International, New York, 1999, p. 37

    Google Scholar 

  32. W. W. Mullins: Acta Metallurgica, 1958, vol. 6, pp. 414-427.

    Article  Google Scholar 

  33. J.W. Martin and R.D. Doherty: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, 1976.

    Google Scholar 

  34. R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser: Thin Solid Films 2000, vol. 370, pp. 54-62.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Vehicle Technologies Office of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. THM, JEE, and NDB acknowledge the support of the Laboratory Directed Research and Development (LDRD) Program Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research (BER) at PNNL. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for DOE under Contract DE-AC05-76RL01830. The authors are grateful to Nicole Overman for performing EDS analysis on the as-sputtered films and Niranjan Govind, Saumyadeep Jana, and Suveen Mathaudhu for discussions about the grain size analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashish Rohatgi.

Additional information

Manuscript submitted March 21, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruska, K., Rohatgi, A., Vemuri, R.S. et al. Grain Growth in Nanocrystalline Mg-Al Thin Films. Metall Mater Trans A 48, 6118–6125 (2017). https://doi.org/10.1007/s11661-017-4350-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4350-0

Navigation