Skip to main content
Log in

Oxide Dissolution and Oxygen Diffusion in Solid-State Recycled Ti-6Al-4V: Numerical Modeling, Verification by Nanoindentation, and Effects on Grain Growth and Recrystallization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Luo, H. Xie, M. Paladugu, S. Palanisamy, M. S. Dargusch and K. Xia: J. Mater. Sci., 2010, vol. 45, pp. 4606-4612.

    Article  Google Scholar 

  2. P. Luo, D. T. McDonald, S. Palanisamy, M. S. Dargusch and K. Xia: J. Mater. Process. Tech., 2013, vol. 213, pp. 469-476.

    Article  Google Scholar 

  3. D. T. McDonald, P. Luo, S. Palanisamy, M. S. Dargusch and K. Xia: In: M. Qian (ed) Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium, Trans Tech Publications Ltd., Stafa-Zurich, 2012, pp. 295-300.

    Google Scholar 

  4. D. T. McDonald, E. W. Lui, S. Palanisamy, M. S. Dargusch and K. Xia: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4089-4102.

    Article  Google Scholar 

  5. E. W. Lui, S. Palanisamy, M. S. Dargusch and K. Xia: J. Mater. Process. Tech., 2016, vol. 238, pp. 297-304.

    Article  Google Scholar 

  6. Y. Takahashi, T. Nakamura and K. Nishiguchi: J. Mater. Sci., 1992, vol. 27, pp. 485-498.

    Article  Google Scholar 

  7. H. Conrad, B. de Meester, M. Döner and K. Okazaki: In: E.W. Collings and H. L. Gegel (ed) Physics of Solid Solution Strengthening, Springer, New York 1975, pp. 1-45.

    Google Scholar 

  8. W. R. Tyson: Scripta Metall., 1969, vol. 3, pp. 917-921.

    Article  Google Scholar 

  9. J. W. Cahn: Acta Metall., 1962, vol. 10, pp. 179-183.

    Article  Google Scholar 

  10. Z. A. Munir: J. Mater. Sci., 1979, vol. 14, pp. 2733-2740.

    Article  Google Scholar 

  11. J. E. Burke and D. Turnbull: Prog. Metal Physics, 1952, vol. 3, pp. 220-292.

    Article  Google Scholar 

  12. G. T. Higgins: Metal Sci., 1974, vol. 8, pp. 143-150.

    Article  Google Scholar 

  13. F. J. Gil, C. Aparicio and J. A. Planell: J. Mater. Synth. Process., 2002, vol. 10, pp. 263-266.

    Article  Google Scholar 

  14. R. Labusch: Phys. Status Solidi B, 1970, vol. 41, pp. 659-669.

    Article  Google Scholar 

  15. E. Gemelli and N.H.A. Camargo: Materia, 2007, vol. 12, pp. 525-531.

    Google Scholar 

  16. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal and E. Mahé: Mater. Sci. Eng. B, 1997, vol. 47, pp. 235-243.

    Article  Google Scholar 

  17. M. Ask. U. Rolander, J. Lausmaa and B. Kasemo: J. Mater. Res., 2011, vol. 5, pp. 1662-1667.

    Article  Google Scholar 

  18. P. Luo, D. T. McDonald, S. M. Zhu, S. Palanisamy, M. S. Dargusch and K. Xia: Mater. Sci. Eng. A, 2012, vol. 538, pp. 252-258.

    Article  Google Scholar 

  19. R. Komanduri: Wear, 1982, vol. 76, pp. 15-34.

    Article  Google Scholar 

  20. Y. Gaillard, V. J. Rico, E. Jimenez-Pique and A. R. Gonzalez-Elipe: J. Phys. D Appl. Phys, 2009, vol. 42, p. 9.

    Google Scholar 

  21. W. C. Oliver and G. M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3-20.

    Article  Google Scholar 

  22. M. Liu, C. Lu, K. A. Tieu, C. T. Peng and C. Kong: Sci. Rep., 2015, vol. 5, p. 16.

    Google Scholar 

  23. Linmao Qian, Ming Li, Zhongrong Zhou, Hui Yang and Xinyu Shi: Surf. Coat. Tech., 2005, vol. 195, pp. 264-271.

    Article  Google Scholar 

  24. W. C. Oliver and G. M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-1583.

    Article  Google Scholar 

  25. J. Friedel: Electron Microscopy and Strength of Crystals, Wiley, University of California. Lawrence Radiation Laboratory. Inorganic Materials Research Division, 1961, pp. 605–50.

  26. N. F. Mott and F. R. N. Nabarro: P. Phys. Soc., 1940, vol. 52, pp. 86-89.

    Article  Google Scholar 

  27. T. L. Jones, K. Kondoh, T. Mimoto, N. Nakanishi and J. Umeda: In: M. A. Imam, F. H. S. Froes and R. G. Reddy (eds) Cost-Affordable Titanium IV, Trans Tech Publications Ltd., Stafa-Zurich, 2013, pp. 118-126.

    Google Scholar 

  28. Michael F. Ashby and David R. H. Jones, Engineering Materials 1 (Fourth Edition), Butterworth-Heinemann, Boston, 2012, pp. 157-170.

    Book  Google Scholar 

  29. S. Panda, S. K. Sahoo, A. Dash, M. Bagwan, G. Kumar, S. C. Mishra and S. Suwas: Mater. Charact., 2014, vol. 98, pp. 93-101.

    Article  Google Scholar 

  30. J. Gubicza, L. C. Dragomir, G. Ribarik, Y. T. Zhu, R. Valiev and T. Ungar: In: J. Gyulai (eds) Materials Science, Testing and Informatics, Trans Tech Publications Ltd., Stafa-Zurich, 2003, pp 229-234.

    Google Scholar 

  31. D. R. Chichili, K. T. Ramesh and K. J. Hemker: Acta Mater., 1998, vol. 46, pp. 1025-1043.

    Article  Google Scholar 

  32. G. Lütjering, J. C. Williams, and A. Gysler. In: J.C.M. Li (ed) Microstructure and Properties of Materials, World Scientific Publishing Co. Pte. Ltd., Singapore, 2000, vol. 2, pp. 1-77.

    Google Scholar 

  33. T. B. Britton, F. P. E. Dunne and A. J. Wilkinson: P. R. Soc. A, 2015, vol. 471, p. 29.

    Article  Google Scholar 

  34. P. Kofstad, K. Hauffe and H. Kjollesdal: Acta Chem. Scand., 1958, vol. 12, pp. 239-266.

    Article  Google Scholar 

  35. H. V. Atkinson: Acta Metall., 1988, vol. 36, pp. 469-491.

    Article  Google Scholar 

  36. F. X. Gil, D. Rodriguez and J. A. Planell: Scripta Metall. Mater., 1995, vol. 33, pp. 1361-1366.

    Article  Google Scholar 

  37. H. Hu and B. B. Rath: Metall. Trans., 1970, vol. 1, pp. 3181-3184.

    Google Scholar 

  38. B. Inem: Mater. Sci. Eng. A, 1995, vol. 197, pp. 91-95.

    Article  Google Scholar 

  39. P. A. Beck and P. R. Sperry: J. Appl. Phys., 1950, vol. 21, pp. 150-152.

    Article  Google Scholar 

  40. P.R. Rios, F. Siciliano Jr, H.R.Z. Sandim, R.L. Plaut, A.F. Padilha.: Mater. Res., 2005, vol. 8, pp. 225-238.

    Article  Google Scholar 

  41. I. Weiss and S. L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46-65.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Defence Materials Technology Centre (DMTC). The DMTC was established and is supported under the Australian Government’s Defence Future Capability Technology Centres Programme. The authors acknowledge the technical assistance of the RMIT Microscopy and Microanalysis Facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. W. Lui or K. Xia.

Additional information

Manuscript submitted January 19, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lui, E.W., Palanisamy, S., Dargusch, M.S. et al. Oxide Dissolution and Oxygen Diffusion in Solid-State Recycled Ti-6Al-4V: Numerical Modeling, Verification by Nanoindentation, and Effects on Grain Growth and Recrystallization. Metall Mater Trans A 48, 5978–5989 (2017). https://doi.org/10.1007/s11661-017-4358-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4358-5

Navigation