Skip to main content
Log in

Evaluation of Carbon Partitioning in New Generation of Quench and Partitioning (Q&P) Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Quenching and partitioning (Q&P) and a novel combined process of hot straining (HS) and Q&P (HSQ&P) treatments have been applied to a TRIP-assisted steel in a Gleeble®3S50 thermomechanical simulator. The heat treatments involved intercritical annealing at 800 °C and a two-step Q&P heat treatment with a partitioning time of 100 seconds at 400 °C. The “optimum” quench temperature of 318 °C was selected according to the constrained carbon equilibrium (CCE) criterion. The effects of high-temperature deformation (isothermal and non-isothermal) on the carbon enrichment of austenite, carbide formation, and the strain-induced transformation to ferrite (SIT) mechanism were investigated. Carbon partitioning from supersaturated martensite into austenite and carbide precipitation were confirmed by means of atom probe tomography (APT) and scanning transmission electron microscopy (STEM). Austenite carbon enrichment was clearly observed in all specimens, and in the HSQ&P samples, it was significantly greater than in Q&P, suggesting an additional carbon partitioning to austenite from ferrite formed by the deformation-induced austenite-to-ferrite transformation (DIFT) phenomenon. By APT, the carbon accumulation at austenite/martensite interfaces was observed, with higher values for HSQ&P deformed isothermally (≈ 11 at. pct), when compared with non-isothermal HSQ&P (≈ 9.45 at. pct) and Q&P (≈ 7.6 at. pct). Moreover, a local Mn enrichment was observed in a ferrite/austenite interface, indicating ferrite growth under local equilibrium with negligible partitioning (LENP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Wang, H. Ding, M. Cai, and B. Rolfe: Mater. Sci. Eng. A, 2014, vol. 610, pp. 436–44.

    Article  Google Scholar 

  2. R. Blondé, E. Jimenez-Melero, L. Zhao, N. Schell, E. Brück, S. van der Zwaag, and N.H. van Dijk: Mater. Sci. Eng. A, 2014, vol. 594, pp. 125–34.

    Article  Google Scholar 

  3. J.-C. Hell, M. Dehmas, S. Allain, J.M. Prado, A. Hazotte, and J.-P. Chateau: ISIJ Int., 2011, vol. 51, pp. 1724–32.

    Article  Google Scholar 

  4. Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying: Acta Mater., 2015, vol. 84, pp. 229–36.

    Article  Google Scholar 

  5. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3691–3702.

    Article  Google Scholar 

  6. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2007, vol. 55, pp. 6713–23.

    Article  Google Scholar 

  7. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2013, vol. 53, pp. 1224–30.

    Article  Google Scholar 

  8. I.B. Timokhina, P.D. Hodgson, and E. V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2331–41.

    Article  Google Scholar 

  9. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, and N.H. van Dijk: Acta Mater., 2012, vol. 60, pp. 565–77.

    Article  Google Scholar 

  10. R. Blondé, E. Jimenez-Melero, R. Huizenga, L. Zhao, J. Wright, E. Bruck, S. van der Zwaag, and N. van Dijk: Mater. Sci. Eng. A, 2014, vol. 47, pp. 965–73.

    Google Scholar 

  11. H.L. Yi, P. Chen, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3512–18.

    Article  Google Scholar 

  12. H.S. Park, J.C. Han, N.S. Lim, and C.G. Park: Mater. Sci. Eng. A, 2015, vol. 627, pp. 262–69.

    Article  Google Scholar 

  13. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425–33.

    Article  Google Scholar 

  14. Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 583, pp. 1–10.

    Article  Google Scholar 

  15. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scr. Mater., 2013, vol. 68, pp. 321–24.

    Article  Google Scholar 

  16. M. Villa, K. Pantleon, and M.A.J. Somers: J. Alloys Compd., 2013, vol. 577, pp. S543–8.

    Article  Google Scholar 

  17. N. Nakada, Y. Ishibashi, T. Tsuchiyama, and S. Takaki: Acta Mater., 2016, vol. 110, pp. 95–102.

    Article  Google Scholar 

  18. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  Google Scholar 

  19. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Mater., 2008, vol. 56, pp. 16–22.

    Article  Google Scholar 

  20. M. Hillert and J. Ågren: Scr. Mater., 2004, vol. 50, pp. 697–99.

    Article  Google Scholar 

  21. J.G. Speer, D.K. Matlock, B.C. DeCooman, and J.G. Schroth: Scr. Mater., 2005, vol. 52, pp. 83–85.

    Article  Google Scholar 

  22. M. Hillert and J. Ågren: Scr. Mater., 2005, vol. 52, pp. 87–8.

    Article  Google Scholar 

  23. G. a. Thomas, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3652–59.

  24. S. Kim, J. Lee, F. Barlat, and M.G. Lee: Acta Mater., 2016, vol. 109, pp. 394–404.

    Article  Google Scholar 

  25. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83.

    Article  Google Scholar 

  26. E.J. Seo, L. Cho, and B.C. De Cooman: Acta Mater., 2016, vol. 107, pp. 354–65.

    Article  Google Scholar 

  27. Y. Toji, G. Miyamoto, and D. Raabe: Acta Mater., 2015, vol. 86, pp. 137–47.

    Article  Google Scholar 

  28. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, a J. Clarke, and J.G. Speer: Acta Mater., 2015, vol. 90, pp. 1–14.

  29. H. Liu, H. Sun, B. Liu, D. Li, F. Sun, and X. Jin: Mater. Des., 2015, vol. 83, pp. 760–7.

    Article  Google Scholar 

  30. M. Karam-Abian, A. Zarei-Hanzaki, H.R. Abedi, and S. Heshmati-Manesh: Mater. Sci. Eng. A, 2016, vol. 651, pp. 233–40.

    Article  Google Scholar 

  31. Y. Chang, G. Li, C. Wang, X. Li, and H. Dong: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3194–3200.

    Article  Google Scholar 

  32. H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi: Scr. Mater., 2011, vol. 64, pp. 749–52.

    Article  Google Scholar 

  33. H. Liu, X. Jin, H. Dong, and J. Shi: Mater. Charact., 2011, vol. 62, pp. 223–27.

    Article  Google Scholar 

  34. E.A. Ariza, A.S. Nishikawa, H. Goldenstein, and A.P. Tschiptschin: Mater. Sci. Eng. A, 2016, vol. 671, pp. 54–69.

    Article  Google Scholar 

  35. D. De Knijf, R. Petrov, C. Föjer, and L.A.I. Kestens: Mater. Sci. Eng. A, 2014, vol. 615, pp. 107–15.

    Article  Google Scholar 

  36. E.J. Seo, L. Cho, and B.C. De Cooman: Acta Mater., 2016, vol. 107, pp. 354–65.

    Article  Google Scholar 

  37. G.A. Thomas, F. Danoix, J.G. Speer, S.W. Thompson, and F. Cuvilly: ISIJ Int., 2014, vol. 54, pp. 2900–06.

    Article  Google Scholar 

  38. Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.

    Article  Google Scholar 

  39. H. Dong and X. Sun: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9, pp. 269–76.

    Article  Google Scholar 

  40. C. Ghosh, V. V. Basabe, J.J. Jonas, Y.M. Kim, I.H. Jung, and S. Yue: Acta Mater., 2013, vol. 61, pp. 2348–62.

    Article  Google Scholar 

  41. A. Bardelcik, M.J. Worswick, and M.A. Wells: Math. Des., 2014, vol. 55, pp. 509–25.

  42. E.A. Ariza, M. Masoumi, and A.P. Tschiptschin: Mater. Sci. Eng. A, 2017, vol. 713, pp. 223–33.

    Article  Google Scholar 

  43. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–39.

    Article  Google Scholar 

  44. G. Thomas, J. Speer, D. Matlock, and J. Michael: Microsc. Microanal., 2011, vol. 17, pp. 368–73.

    Article  Google Scholar 

  45. W. Poling, V. Savic, L. Hector, A. Sachdev, X. Hu, A. Devaraj, and F. Abu-Farha: SAE 2016 World Congress and Exhibition, 2016. https://doi.org/10.4271/2016-01-0419.

  46. D. De Knijf, R. Petrov, C. Föjer, and L.A.I. Kestens: Mater. Sci. Eng. A, 2014, vol. 615, pp. 107–15.

    Article  Google Scholar 

  47. J. Ågren: Scr. Metall., 1986, vol. 20, pp. 1507–10.

    Article  Google Scholar 

  48. A.S. Nishikawa, M.J. Santofimia, J. Sietsma, and H. Goldenstein: Acta Mater., 2018, vol. 142, pp. 142–51.

    Article  Google Scholar 

  49. D. De Knijf, R. Petrov, C. Föjer, and L.A.I. Kestens: Mater. Sci. Eng. A, 2014, vol. 615, pp. 107–15.

    Article  Google Scholar 

  50. M.J. Santofimia, L. Zhao, and J. Sietsma: Metall. Mater. Trans. A, 2008, vol. 40, pp. 46–57.

    Article  Google Scholar 

  51. I.B. Timokhina, H. Beladi, X.Y. Xiong, Y. Adachi, and P.D. Hodgson: Acta Mater., 2011, vol. 59, pp. 5511–22.

    Article  Google Scholar 

  52. I.B. Timokhina, E. V. Pereloma, S.P. Ringer, R.K. Zheng, and P.D. Hodgson: ISIJ Int., 2010, vol. 50, pp. 574–82.

    Article  Google Scholar 

  53. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, and M. Thuvander: Acta Mater., 2011, vol. 59, pp. 5845–58.

    Article  Google Scholar 

  54. H. Qu: Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, 2013.

  55. K. Hase, C. Garcia-Mateo, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 1499–1505.

    Article  Google Scholar 

  56. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., Institute of Materials, London, 2001, pp. 201–24.

  57. Mohamadizadeh, A. Zarei-Hanzaki, S. Heshmati-Manesh, and A. Imandoust: Mater. Sci. Eng. A, 2014, vol. 607, pp. 621–9.

    Article  Google Scholar 

  58. M.J. Santofimia, L. Zhao, and J. Sietsma: Metall. Mater. Trans. A, 2008, vol. 40, pp. 46–57.

    Article  Google Scholar 

  59. J. Sun and H. Yu: Mater. Sci. Eng. A, 2013, vol. 586, pp. 100–7.

    Article  Google Scholar 

  60. N. Maheswari, S.G. Chowdhury, K.C.H. Kumar, and S. Sankaran: Mater. Sci. Eng. A, 2014, vol. 600, pp. 12–20.

    Article  Google Scholar 

  61. E.J. Seo, L. Cho, and B.C. De Cooman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, vol. 45, pp. 4022–37.

    Google Scholar 

  62. C. Song, H. Yu, L. Li, T. Zhou, J. Lu, and X. Liu: Mater. Sci. Eng. A, 2016, vol. 670, pp. 326–34.

    Article  Google Scholar 

  63. J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, and H. Li: Mater. Sci. Eng. A, 2017, vol. 690, pp. 283–93.

    Article  Google Scholar 

  64. W. Li, H. Gao, H. Nakashima, S. Hata, and W. Tian: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 906–19.

    Article  Google Scholar 

  65. W.T. Zhao, X.F. Huang, and W.G. Huang: Mater. Sci. Technol., 2016, vol. 32, pp. 1–8.

    Article  Google Scholar 

  66. H.R. Ghazvinloo, A. Honarbakhsh-Raouf, and E. Borhani: Metallurgist, 2016, vol. 60, pp. 758–64.

    Article  Google Scholar 

  67. M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, and H. Zurob: Mater. Sci. Eng. R Reports, 2015, vol. 92, pp. 1–38.

    Article  Google Scholar 

  68. S. Sun and M. Pugh: Mater. Sci. Eng. A, 2000, vol. 276, pp. 167–74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from CAPES—(Process No. 1715938), CNPq—Processes 401472/2012-4 and 235297/2014-3, Sandwich, Ph.D. The Brazilian Synchrotron Light Laboratory (LNLS) and Brazilian Nanotechnology National Laboratory (LNNano) are also acknowledged for the use of the XTMS facility; Arthur Seiji Nishikawa for valuable comments and discussions; and Dorothy W. Coffey for FIB (Focus Ion Milling) specimen preparation. The authors also thank Andres E. Marquez Rossy for help with the FEG-SEM. This research was performed, in part, using instrumentation (FEI Talos F200X S/TEM) provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities. APT measurements were conducted at ORNL’s Center for Nanophase Materials Sciences (CNMS), which is a U.S. DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwan Anderson Ariza.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted January, 20 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariza, E.A., Poplawsky, J., Guo, W. et al. Evaluation of Carbon Partitioning in New Generation of Quench and Partitioning (Q&P) Steels. Metall Mater Trans A 49, 4809–4823 (2018). https://doi.org/10.1007/s11661-018-4743-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4743-8

Navigation