Skip to main content

Advertisement

Log in

The Quality of Fe14Cr ODS Powder Alloys During Milling and Upon Heating and Its Impact on the Mechanical Properties of Consolidated Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened ferritic steels (ODSFSs) are promising structural materials for applications in fusion and fission power reactors, but further improvement in their (high-temperature) mechanical properties and ferrite phase stability is required. This work demonstrates that an approach to produce Fe14Cr ODSFSs with a stable ferrite phase and improved strength could involve grain size strengthening by long-term milling with a tiny amount of nitrogen. Fe-14Cr-3W-0.4Ti-0.25Y2O3 powders were ball-milled up to 170 hours under an argon atmosphere. In addition to X-ray diffraction, the change in product quality during milling and upon heating was thoroughly investigated by more sensitive magnetic and thermal analysis by measuring the saturation magnetization σs, coercivity Hc, Curie temperature Tc, and temperature of ferrite-austenite (α → γ) transition Tα→γ. A pronounced modification of magnetic and microstructure parameters was observed when milling over 70 hours and upon heating above 800 °C and was found to be generated by long-term milling with a tiny amount of nitrogen. Upon heating, the nitrogen, incorporated during milling, developed a α → γ transition region, with the decomposition of nitrides precipitated at the earlier stage of heating followed by austenite decomposition, nitrogen degassing, and microstructure refinement to a grain size of a few tenths of a nm (e.g., 28 nm by heating at 910 °C of 100-hour milled powder). The resulting ferrite phase with refined grains is highly stable to (further) heating. The powders milled for 70 and 100 hours containing 0.175 and 0.500 wt pct nitrogen, respectively, were consolidated at 1100 °C with subsequent annealing at 1050 °C and subjected to Vickers hardness and 3-point bending tests. The steel produced from the powder milled for 70 hours shows lower hardness, higher density (close to the theoretical value of 7.8 g/cm3), and fracture strain. The ductility of this ODS alloy (0.075 fracture strain) is comparable with Eurofer97 (0.075 fracture strain), whereas its strength (2070 MPa ultimate stress) is significantly higher than that of Eurofer97 (1222 MPa ultimate stress). This improvement was attributed to grain size strengthening—the refined grains (promoted by milling with nitrogen) could be effectively pinned by Y-Ti-O dispersoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Valentina Mihalache: J Therm Anal Calorim, 2016, vol. 124, pp. 1179-1192.

    Article  Google Scholar 

  2. J.R. Rieken, I.E. Anderson, M.J. Kramer, G.R. Odette, E. Stergar, and E. Haney: Journal of Nuclear Materials, 2012, vol. 428(1), pp. 65-75.

    Article  Google Scholar 

  3. L. Tian, I. E. Anderson, T. M. Riedemann, and A. M. Russell: Powder Technology, 2017, vol. 308, pp. 84-93.

    Article  Google Scholar 

  4. G. R. Odette: JOM, 2014, vol. 66, pp. 2427-2441.

    Article  Google Scholar 

  5. C. A. Williams, P. Unifantowicz, N. Baluc, G. D.W. Smith, and E. A. Marquis: Acta Mater., 2013, vol. 61, pp. 2219-2235.

    Article  Google Scholar 

  6. C. Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker, New York, 2004.

    Book  Google Scholar 

  7. J. Aufrecht, A. Leineweber, J. Foct, and E. J. Mittemeijer: Philosophical Magazine, 2008, vol. 88, pp. 1835-1855.

    Article  Google Scholar 

  8. J. C. Rawers, R. Krabbe, D. C. Cook, and T.H. Kim: Nanostructured Materials, 1997, vol. 9, pp. 145-148.

    Article  Google Scholar 

  9. J. C. Rawers and D. C. Cook: Nanostructured Materials, 1999, vol.11, pp. 331-342.

    Article  Google Scholar 

  10. S. M. Teus, V. F. Mazanko, J. M. Olive, and V. G. Gavriljuk: Acta Mater, 2014, vol 69, pp.105-113.

    Article  Google Scholar 

  11. V. Mihalache, I. Mercioniu, G. Aldica, and I. Pasuk: J. Therm. Anal. Calorim., 2018, vol. 134, p. 463.

  12. B. D. Cullity and C. D. Graham: Introduction to Magnetic Materials, 2nd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.

    Book  Google Scholar 

  13. D. C. Jiles: J. Phys. D: Appl. Phys., 1988, vol. 21, pp. 1196-1204.

    Article  Google Scholar 

  14. L. Zhao, N. H. van Dijk, E. Bruck, J. Sietsma, and S. van der Zwaag: Mater. Sci. and Eng. A, 2001, vol. 313, pp. 145- 152.

    Article  Google Scholar 

  15. A. Fnidiki, C. Lemoine, and J. Teillet: J. Phys.: Condens. Matter, 2002, vol. 14, pp. 7221-7232.

    Article  Google Scholar 

  16. A. Fnidiki, C. Lemoine, J. Teillet, and M. Nogues: Physica B, 2005, vol. 363, pp. 271-281.

    Article  Google Scholar 

  17. X. Wang and W. Qiang: Journal of Nuclear Materials, 2016, vol. 482, pp.135 - 138

    Article  Google Scholar 

  18. V.B. Oliveira, M.J.R. Sandim, D. Stamopoulos, R.A. Renzetti, A.D. Santos, and H.R.Z. Sandim: Journal of Nuclear Materials, 2013, vol. 435, pp. 189-195

    Article  Google Scholar 

  19. K. Mergia and N. Boukos: Journal of Nuclear Materials, 2008, vol. 373, pp. 1-8

    Article  Google Scholar 

  20. R.A. Renzetti, H.R.Z. Sandim, M.J.R. Sandim, A.D. Santos, A. Möslang, and D. Raabe: Materials Science and Engineering A, 2011, vol. 528, pp. 1442–1447

    Article  Google Scholar 

  21. K.D. Zilnyk, H.R.Z. Sandim, R.E. Bolmaro, R. Lindau, A. Möslang, A. Kostka, and D. Raabe: Journal of Nuclear Materials, 2014, vol. 448, pp. 33–42

    Article  Google Scholar 

  22. M. Kersten: Underlying Theory of Ferromagnetic Hysteresis and Coercivity, Hirzel., Leipzig, 1943.

    Google Scholar 

  23. E. Adler and H. Pfeiffer: IEEE. Trans. Magn., 1974, vol. 10, pp. 172–74.

  24. E. Arzt: Acta Mater., 1998, vol. 46, pp. 5611-5626.

    Article  Google Scholar 

  25. H. Traüble: Magnetism and Metallurgy, vol. 2, A.E. Berkowitz and E. Kneller, eds., Academic Press, New York, 1969.

  26. M. Oyarzábal, K. Gurruchaga, A. Martínez-de-Guerenu, and I. Gutiérrez: ISIJ Int., 2007, vol. 47, pp. 1458-1464.

    Article  Google Scholar 

  27. M. Ananda Rao, S. Bhargava, and D. Deva: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3195–3204.

  28. B. Pandey, R. M. Ananda, H. C. Verma, and S. Bhargava: J. Phys.: Condens. Matter, 2005, vol. 17, pp. 7981-7993.

    Article  Google Scholar 

  29. A. T. Aldred, B. D Rainford, J. S Kouvel, and T. J. Hicks: Phys. Rev. B, 1976, vol. 14, pp. 228- 234.

    Article  Google Scholar 

  30. M. Yu. Lavrentiev, K. Mergia, M. Gjoka, D. Nguyen-Manh, G. Apostolopoulos, and S. L. Dudarev: J. Phys.: Condens. Matter, 2012, vol. 24, pp. 326001- 326005.

    Article  Google Scholar 

  31. F.Z. Bentayeb, S. Alleg, B. Bouzabata, and J.M. Greneche: J. Magn. and Magn. Mater., 2005, vol. 288, pp. 282-296.

    Article  Google Scholar 

  32. E. Salahinejad, R. Amini, and M. J. Hadianfard: Powder Technology, 2012, vol. 215, pp. 247- 253.

    Article  Google Scholar 

  33. P. M. Hazzledine: Scr Metall Mater, 1992, vol. 26, pp. 57-58.

    Article  Google Scholar 

  34. J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, and T. Shanmugasundaram: Acta Materialia, 2011, vol. 59, pp. 1300-13008.

    Article  Google Scholar 

  35. Liqing Huanga, Zuming Liua, Shiqi Chen, and Yang Guo: Fusion Engineering and Design, 2015, vol. 101, pp. 17–21.

    Article  Google Scholar 

  36. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba: Mater. Sci. Eng. A, 2003, vol. 342, pp. 131–143.

    Article  Google Scholar 

  37. D. C. Jiles: J. Phys. D: Appl. Phys., 1988, vol. 21, pp. 1186-1195.

    Article  Google Scholar 

  38. E. Hryha and L. Nyborg: J Therm Anal Calorim, 2014, vol. 118, pp. 825-834.

    Article  Google Scholar 

  39. S. S. M Tavares, D. Fruchart, S. Miraglia, and D. Laborie: J. of Alloys and Comp., 2000, vol. 312, pp. 307- 314.

    Article  Google Scholar 

  40. A. Hirata, T. Fujita, Y. R. Wen, J.H. Schneibel, C. T. Liu, and M. W. Chen: Nature Mater., 2011, vol. 10, pp. 922-926.

    Article  Google Scholar 

  41. K. D. Zilnyk, K. G. Pradeep, P. Choi, H. R. Z. Sandim, and D. Raabe: Journal of Nuclear Materials, 2017, vol. 492, pp. 142-147

    Article  Google Scholar 

  42. S.Y. Zhong, J. Ribis, N. Lochet, Y. de Carlan, V. Klosek, and M. H. Mathon, J Nuclear Materials, 2014, vol. 455, pp. 618-623.

    Article  Google Scholar 

  43. M. J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392-406.

    Article  Google Scholar 

  44. M. Laurent-Brocq, F. Legendre, M. H. Mathon, A. Mascaro, S. Poissonnet, B. Radiguet, P. Pareige, M. Loyer, and O. Leseigneur: Acta Mater., 2012, vol. 60, pp. 7150-7159.

    Article  Google Scholar 

  45. X. Boulnat, M. Perez, D. Fabregue, T. Douillard, M. H. Mathon, and Y. de Carlan: Metall Mater Trans A, 2014, vol. 45, pp. 1485-1497.

    Article  Google Scholar 

  46. V. Mihalache, I. Mercioniu, A. Velea, and P. Palade: Powder Technol., 2019, vol. 347, pp. 103–113.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community within the framework of the European Fusion Development Agreement (EFDA) under project WP13-MAT, by the Romanian Ministry of Research and Innovation under the Core Program PN19-03 (contract no. 21N/08.02.2019) and by the CCDI-UEFISCDI PN-III-P1-1.2-PCCDI-2017-0871: project 47PCCDI/2018. The views and opinions expressed herein do not necessarily reflect those of the European Commission. I. Pasuk, G. Aldica, A. Velea, and A. Leca from NIMP (Romania) are greatly acknowledged for their experimental and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mihalache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihalache, V., Walter, M., Mercioniu, I. et al. The Quality of Fe14Cr ODS Powder Alloys During Milling and Upon Heating and Its Impact on the Mechanical Properties of Consolidated Steels. Metall Mater Trans A 50, 3282–3294 (2019). https://doi.org/10.1007/s11661-019-05264-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05264-3

Navigation