Skip to main content
Log in

Effect of Phosphorus on the Phase Stability of a High Refractory Content Powder-Processed Ni‐Base Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of P on the phase stability of a high refractory content powder-processed Ni-base superalloy was systematically studied with a variation of P addition. The microstructural evolution of nominally identical alloys with three levels of P additions (0.013, 0.026, and 0.041 wt pct) were investigated in the as-solutioned state and after thermal exposures at 800 °C for up to 1000 hours. Additions of P were found to segregate strongly at grain boundaries and depress the incipient melting temperature. The presence of P contributed to the formation of a C14 Laves as resolidification of incipiently melted liquid occurred. P additions also affected the solid-state phase stability of the alloys as aging at 800 °C led to the formation of C36 Laves phase precipitates. An increase in the fraction of C36 Laves phase correlated directly to the increases in the P content of the alloy. The extensive precipitation of C36 Laves phase eventually led to the formation of a basket-weave structure composed of an intertwined mixture of C14 Laves and sigma phase during the long-term thermal exposure at 800 °C. The stabilization of the Laves phase structure due to the minor additions of P was found to be consistent with density functional theory calculations and could be rationalized through structure maps that relate the valence electron concentration and relative size differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006.

    Book  Google Scholar 

  2. 2 T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  3. 3 T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15.

    Article  CAS  Google Scholar 

  4. 4 A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.

    Article  CAS  Google Scholar 

  5. P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, and R.C. Reed: Acta Mater., 2017, vol. 125, pp. 156–65.

    Article  CAS  Google Scholar 

  6. D.J. Crudden, B. Raeisinia, N. Warnken, and R.C. Reed: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2418–30.

    Article  CAS  Google Scholar 

  7. P. Kontis, A. Kostka, D. Raabe, and B. Gault: Acta Mater., 2019, vol. 166, pp. 158–67.

    Article  CAS  Google Scholar 

  8. P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, and R.C. Reed: Acta Mater., 2016, vol. 103, pp. 688–99.

    Article  CAS  Google Scholar 

  9. P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, and R.C. Reed: Acta Mater., 2017, vol. 124, pp. 489–500.

    Article  CAS  Google Scholar 

  10. W.D. Cao and R.L. Kennedy: in Superalloys 1996: Proceedings of the 8th International Symposium on Superalloys, 1996, pp. 589–97.

  11. W.D. Cao and R.L. Kennedy: in Superalloys 718, 625, 706 and Various Derivatives, 1997, pp. 511–20.

  12. C.G. McKamey, C.A. Carmichael, W.D. Cao, and R.L. Kennedy: Scr. Mater., 1998, vol. 38, pp. 485–91.

    Article  CAS  Google Scholar 

  13. W.R. Sun, S.R. Guo, D.Z. Lu, and Z.Q. Hu: Metall. Mater. Trans. A 1997, 28 A, 649–54.

    Article  Google Scholar 

  14. X. Xie, X. Liu, Y. Hu, B. Tang, Z. Xu, J. Dong, K. Ni, Y. Zhu, S. Tien, L. Zhang, and W. Xie: in Superalloys 1996: Proceedings of the 8th International Symposium on Superalloys, 1996, pp. 599–606.

  15. S. Yang, W. Sun, J. Wang, Z. Ge, S. Guo, and Z. Hu: J. Mater. Sci. Technol., 2011, vol. 27, pp. 539–45.

    Article  Google Scholar 

  16. X. Xie, X. Liu, J. Dong, Y. Iu, Z. Xu, Y. Zhu, W. Luo, Z. Zhang, and R.G. Thompson: in Superalloys 718, 625, 706 and Various Derivatives, 1997, pp. 531–42.

  17. H. Song, S. Guo, and Z. Hu: Scr. Mater., 1999, vol. 41, pp. 215–9.

    Article  CAS  Google Scholar 

  18. S. Guan, C. Cui, Y. Yuan, and Y. Gu: Mater. Sci. Eng. A, 2016, vol. 662, pp. 275–82.

    Article  CAS  Google Scholar 

  19. M. Wang, J. Du, Q. Deng, Z. Tian, and J. Zhu: Mater. Sci. Eng. A, 2015, vol. 626, pp. 382–9.

    Article  CAS  Google Scholar 

  20. S.J. Sijbrandij, M.K. Miller, J.A. Horton, and W.D. Cao: Mater. Sci. Eng. A, 1998, vol. 250, pp. 115–9.

    Article  Google Scholar 

  21. T. Alam, P.J. Felfer, M. Chaturvedi, L.T. Stephenson, M.R. Kilburn, and J.M. Cairney: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2183–91.

    Article  CAS  Google Scholar 

  22. D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada: Mater. Sci. Eng. A, 2007, vol. 456, pp. 99–102.

    Article  Google Scholar 

  23. W. Liu, C. Ren, H. Han, J. Tan, Y. Zou, X. Zhou, P. Huai, and H. Xu: J. Appl. Phys., 2014, vol. 115, pp. 043706-1–7.

    Google Scholar 

  24. J.H. Du, X.D. Lu, Q. Deng, J.L. Qu, J.Y. Zhuang, and Z.Y. Zhong: Mater. Sci. Eng. A, 2007, vol. 452–453, pp. 584–91.

    Article  Google Scholar 

  25. E.J. Pickering, H. Mathur, A. Bhowmik, O.M.D.M. Messé, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, and C.M.F. Rae: Acta Mater., 2012, vol. 60, pp. 2757–69.

    Article  CAS  Google Scholar 

  26. Y. Hasebe, M. Yoshida, E. Maeda, and S. Ohsaki: in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives, 2018, pp. 527–40.

  27. Y. Hasebe, K. Takasawa, T. Ohkawa, E. Maeda, and T. Hatano: in Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, 2016, pp. 65–73.

  28. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: in Superalloys 718, 625, 706 and Various Derivatives, 1997, pp. 367–78.

  29. L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Mater. Sci. Eng. A, 2005, vol. 397, pp. 297–304.

    Article  Google Scholar 

  30. R. Krakow, D.N. Johnstone, A.S. Eggeman, D. Hünert, M.C. Hardy, C.M.F. Rae, and P.A. Midgley: Acta Mater., 2017, vol. 130, pp. 271–80.

    Article  CAS  Google Scholar 

  31. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Mater. Sci. Eng. A, 2017, vol. 687, pp. 232–40.

    Article  CAS  Google Scholar 

  32. J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2007, vol. 465, pp. 100–8.

    Article  Google Scholar 

  33. R.C. Reed, M.P. Jackson, and Y.S. Na: Metall. Mater. Trans. A, 1999, vol. 30, pp. 521–33.

    Article  CAS  Google Scholar 

  34. D.W. Hunt, D.K. Skelton, and D.M. Knowles: in Superalloys 2000: Proc. 9th Int. Symp. Superalloys, 2000, pp. 795–802.

  35. A.S. Wilson: Mater. Sci. Technol., 2017, vol. 33, pp. 1108–18.

    Article  CAS  Google Scholar 

  36. S. Antonov, M. Detrois, R.C. Helmink, and S. Tin: J. Alloys Compd., 2015, vol. 626, pp. 76–86.

    Article  CAS  Google Scholar 

  37. B.H. Toby and R.B. Von Dreele: J. Appl. Crystallogr., 2013, vol. 46, pp. 544–9.

    Article  CAS  Google Scholar 

  38. B. P.E.: Phys. Rev. B, 1994, vol. 50, pp. 17953–79.

  39. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–8.

    Article  CAS  Google Scholar 

  41. A. van de Walle and M. Asta: Model. Simul. Mater. Sci. Eng., 2002, vol. 10, pp. 521–38.

    Article  Google Scholar 

  42. A. van de Walle, M. Asta, and G. Ceder: Calphad, 2002, vol. 26, pp. 539–53.

    Article  Google Scholar 

  43. D. Grüner, F. Stein, M. Palm, J. Konrad, A. Ormeci, W. Schnelle, Y. Grin, and G. Kreiner: Zeitschrift für Krist. - Cryst. Mater., 2006, vol. 221, pp. 158–62.

    Google Scholar 

  44. F. Stein, M. Palm, and G. Sauthoff: Intermetallics, 2004, vol. 12, pp. 713–20.

    Article  CAS  Google Scholar 

  45. F. Stein, M. Palm, and G. Sauthoff: Intermetallics, 2005, vol. 13, pp. 1056–74.

    Article  CAS  Google Scholar 

  46. F. Stein: Mater. Res. Soc. Symp. Proc., 2011, vol. 1295, pp. 299–310.

    Article  Google Scholar 

  47. Z. Shi, X. Yan, and C. Duan: in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives, 2018, pp. 735–48.

  48. B. Seiser, R. Drautz, and D.G. Pettifor: Acta Mater., 2011, vol. 59, pp. 749–63.

    Article  CAS  Google Scholar 

  49. T. Hammerschmidt, A.F. Bialon, D.G. Pettifor, and R. Drautz, New J. Phys. 15, 0–18 (2013)

    Article  Google Scholar 

  50. B. Seiser, T. Hammerschmidt, A.N. Kolmogorov, R. Drautz, and D.G. Pettifor: Phys. Rev. B, 2011, vol. 83, pp. 1–17.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Rolls-Royce Corporation and Dr. Eugene Sun for the financial support and provision of the alloys used in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Kim, G., Chen, W. et al. Effect of Phosphorus on the Phase Stability of a High Refractory Content Powder-Processed Ni‐Base Superalloy. Metall Mater Trans A 50, 5459–5475 (2019). https://doi.org/10.1007/s11661-019-05427-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05427-2

Navigation