Skip to main content
Log in

Recrystallization and Grain Growth Simulations for Multiple-Pass Rolling and Annealing of U-10Mo

  • 5th World Congress on Integrated Computational Materials Engineering
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A simulation model of recrystallization and grain growth has been developed to investigate grain structure evolution during deformation and heat treatment in polycrystalline U-10 wt pct Mo (U-10Mo) fuel. Experimentally obtained U-10Mo post-homogenization microstructures were used as input for closed-loop simulations of multiple rolling passes, intermediate heating, and final annealing. Finite element model calculations of deformation and Potts model simulations of recrystallization and grain growth were used to iteratively inform each subsequent stage of simulation. The model was then applied to predict the grain structure evolution during multiple-pass hot rolling and annealing of U-10Mo and benchmarked against experimentally observed U-10Mo recrystallization behavior. The results showed that our model was able to capture the coupling between deformation and recrystallization as a function of microstructure, including particle stimulated nucleation and recrystallization nucleation on grain boundaries. Additionally, we have achieved reasonable quantitative agreement with U-10Mo recrystallization and grain growth behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.E. Frazier, S. Hu, N. Overman, C. Lavender, and V. V Joshi: J. Nucl. Mater., 2018, vol. 498, pp. 254–58.

    Article  CAS  Google Scholar 

  2. Z.G. Mei, L. Liang, Y.S. Kim, T. Wiencek, E. O’Hare, A.M. Yacout, G. Hofman, and M. Anitescu: J. Nucl. Mater., 2015, vol. 473, pp. 300–08.

    Article  Google Scholar 

  3. B. Beeler, Y. Zhang, and Y. Gao (2018) An Atomistic Study of Grain Boundaries and Surfaces in g U-Mo. Elsevier B.V, Amsterdam.

    Google Scholar 

  4. C. Wang, A. Soulami, Z. Xu, G. Cheng, S. Hu, D. Burkes, W.E. Frazier, K.S. Choi, X. Wang, X. Hu, C.A. Lavender, and V.V. Joshi: Process Modeling of U-10wt % Mo Alloys Using Integrated Computational Materials Engineering, PNNL-28640. Richland, WA: Pacific Northwest National Laboratory, 2019.

    Book  Google Scholar 

  5. R. Prabhakaran, V. Joshi, M. Rhodes, A. Schemer-Kohrn, A. Guzman, and C. Lavender (2016) U-10Mo Sample Preparation and Examination Using Optical and Scanning Electron Microscopy. Pacific Northwest National Lab, Richland, WA.

    Google Scholar 

  6. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri (2012) NIH Image to ImageJ: 25 Years of Image Analysis. Nature Publishing Group, Berlin.

    Google Scholar 

  7. P.A. Manohar, M. Ferry, and T. Chandra (1998) Five decades of the zener equation. 38, 913-924.

    Article  CAS  Google Scholar 

  8. G. Cheng, X. Hu, W.E. Frazier, C.A. Lavender, and V. V. Joshi (2018) Effect of Second Phase Particles and Stringers on Microstructures after Rolling and Recrystallization, Elsevier B.V., Oxford.

    Book  Google Scholar 

  9. C.S. Smith: Trans. Am. Inst. Min. Eng., 1948, vol. 175, pp. 15–51.

    Google Scholar 

  10. X. Wang, Z. Xu, A. Soulami, X. Hu, C. Lavender, and V. Joshi: JOM, 2017, vol. 69, pp. 2532–37.

    Article  CAS  Google Scholar 

  11. X. Hu, X. Wang, V. V. Joshi, and C.A. Lavender (2018) The Effect of Thermomechanical Processing on Second Phase Particle Redistribution in U-10 wt%Mo, vol. 500, Elsevier B.V, Amsterdam.

    Google Scholar 

  12. X.H. Hu, M. Jain, D.S. Wilkinson, and R.K. Mishra (2008) Microstructure-Based Finite Element Analysis of Strain Localization Behavior in AA5754 Aluminum Sheet. Acta Mater. 56, 3187-3201.

    Article  CAS  Google Scholar 

  13. Raabe: Acta Mater., 2000, vol. 48, pp. 1617–28.

    Article  CAS  Google Scholar 

  14. D. Zöllner: Comput. Mater. Sci., 2014, vol. 86, pp. 99–107.

    Article  Google Scholar 

  15. P.E. Goins and E.A. Holm (2016) The Material Point Monte Carlo Model: A Discrete, off-Lattice Method for Microstructural Evolution Simulations, vol. 124, Elsevier B.V., Amsterdam.

    Google Scholar 

  16. S.M. Foiles: Scr. Mater., 2010, vol. 62, pp. 231–34.

    Article  CAS  Google Scholar 

  17. W.E. Frazier, S. Hu, N. Overman, R. Prabhakaran, C. Lavender, and V. V Joshi: J. Nucl. Mater., 2019, vol. 513, pp. 56–61.

    Article  CAS  Google Scholar 

  18. G. Cheng, X. Hu, W.E. Frazier, C.A. Lavender, and V. V. Joshi: Mater. Sci. Eng. A, 2018, vol. 736, pp. 41–52.

    Article  CAS  Google Scholar 

  19. Z. Xu, V. Joshi, S. Hu, D. Paxton, C. Lavender, and D. Burkes (2016) J. Nucl. Mater., 471, 154-164.

    Article  CAS  Google Scholar 

  20. V. V Joshi, E.A. Nyberg, C.A. Lavender, D. Paxton, and D.E. Burkes (2015) Thermomechanical Process Optimization of U-10wt % Mo Part 2 : The Effect of Homogenization on the Mechanical Properties and Microstructure, vol. 465, Elsevier B.V, Amsterdam.

    Google Scholar 

  21. S. Jana, L. Sweet, D. Neal, A. Schemer-kohrn, and C. Lavender: J. Nucl. Mater., 2018, vol. 509, pp. 318–29.

    Article  CAS  Google Scholar 

  22. K.F. Adam, Z. Long, and D.P. Field: Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy, vol. 48, Springer US, 2017.

    Google Scholar 

  23. R.L. Goetz (2005) Scr. Mater., 52, 851-856.

    Article  CAS  Google Scholar 

  24. K. Adam, J.M. Root, Z. Long, and D.P. Field: Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys, vol. 26, Springer US, 2017.

    Google Scholar 

  25. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett (1997) Mater. Today. 238, 14-15.

    Google Scholar 

  26. F.J. Humphreys and M. Hatherly (2004) Recrystalization and Related Annealing Phenomena. Elsevier, Amsterdam.

    Google Scholar 

  27. M. Ferry and P.R. Munroe (2004) Compos. Part A, 35, 1017-1025.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE) National Nuclear Security Administration, for the Office of Materials Management and Minimization (M3) under Contract DE-AC05-76RL01830. The authors thank Mark Rhodes and Alan Schemer-Kohrn of PNNL for assisting in the microstructural characterization, and all the other staff directly or indirectly associated with producing the results featured in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Frazier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 20, 2019

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazier, W., Wang, C., Xu, Z. et al. Recrystallization and Grain Growth Simulations for Multiple-Pass Rolling and Annealing of U-10Mo. Metall Mater Trans A 51, 533–544 (2020). https://doi.org/10.1007/s11661-019-05582-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05582-6

Navigation