Skip to main content
Log in

Modelling of Processing Steps of New Generation ODS Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The paper describes the processing of an oxide-dispersion strengthened (ODS) alloy with the chemical composition Fe-10Al-4Y2O3. A creep-resistant microstructure with coarse grains and a high volume fraction of finely dispersed oxides is obtained by a processing chain consisting of mechanical alloying of the powder, consolidation by hot rolling and subsequent annealing at 1200 °C. To understand the processes underlying the microstructural evolution during hot rolling and annealing, a model for strain hardening, recovery, recrystallization and grain growth is adapted. The quantitative model is able to describe the observed microstructural features and allows identifying processing windows in which the desired microstructure can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1] T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1994, vol. 42, pp. 1859-74.

    Article  CAS  Google Scholar 

  2. [2] J. Svoboda and P. Lukáš: Acta Mater., 1998, vol. 46, pp. 3421-31.

    Article  CAS  Google Scholar 

  3. [3] J. Svoboda and P. Lukáš: Acta Mater., 2000, vol. 48, pp. 2519-28.

    Article  CAS  Google Scholar 

  4. [4] P. Krautwasser, A. Czyrska-Filemonowitz, M. Widera, and F. Carsughi: Mater. Sci. Eng. A, 1994, vol. 177, pp. 199-208.

    Article  CAS  Google Scholar 

  5. J. Svoboda, V. Horník, L. Stratil, H. Hadraba, B. Mašek, O. Khalaj, and H. Jirková: Metals, 2018, vol. 8, pp. 1079.

    Article  CAS  Google Scholar 

  6. [6] J. Rösler and E. Arzt: Acta Metall., 1990, vol. 38, pp. 671-83.

    Article  Google Scholar 

  7. [7] J. Svoboda, W. Ecker, V. Razumovskiy, G.A. Zickler, and F.D. Fischer: Prog. Mater. Sci., 2019, vol. 101, pp. 172-206.

    Article  CAS  Google Scholar 

  8. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. JuulJensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Mater. Sci. Eng., 1997, vol. A238, pp. 219–274.

    Article  Google Scholar 

  9. [9] M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-1112.

    Article  CAS  Google Scholar 

  10. [10] O. Engler, L. Löchte, J. Hirsch: Acta Mater., 2007, vol. 55, pp. 5449-63.

    Article  CAS  Google Scholar 

  11. [11] O. Engler: Materials Science Forum Online, 2012, vols. 715-716, pp 399-406.

    Article  Google Scholar 

  12. [12] H. Hallberg: Metals, 2011, vol. 1, pp. 16-48.

    Article  CAS  Google Scholar 

  13. [13] A.D. Rollett, D. Raabe: Comput. Mater. Sci., 2001, vol. 21, pp. 69-78.

    Article  Google Scholar 

  14. [14] D. Weygand, Y. Bréchet, J. Lépinoux: Adv. Eng. Mater., 2001, vol. 3, pp. 67-71.

    Article  CAS  Google Scholar 

  15. [15] D. Raabe: Philos. Mag. A, 1999, vol. 79, pp. 2339-2358,.

    Article  CAS  Google Scholar 

  16. [16] C. Haase, M. Kühbach, L.A. Barrales-Mora, S.L. Wong, F. Roters, D.A. Molodov, G. Gottstein: Acta Mater., 2015, vol. 100, pp. 155-168.

    Article  CAS  Google Scholar 

  17. [17] C.E. Krill, L.Q. Chen: Acta Mater., 2002, vol. 50, pp. 3059-3075.

    Article  Google Scholar 

  18. [18] M. Bernacki, Y. Chastel, T. Coupez, R. Loge: Scr. Mater., 2008, vol. 58, pp. 1129-1132.

    Article  CAS  Google Scholar 

  19. B. Scholtes, R. Boulais-Sinou, A. Settefrati, D. PinoMuñoz, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, Computational Mater. Sci., 2016, vol. 122, pp. 57-71.

    Article  Google Scholar 

  20. [20] F. Montheillet, O. Lurdos, and G. Damamme: Acta Mater., 2009, vol. 57, pp. 1602-12.

    Article  CAS  Google Scholar 

  21. [21] P. Bernard, S. Bag, K. Huang, and R.E. Logé: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7357-67.

    Article  CAS  Google Scholar 

  22. [22] H. Riedel and J. Svoboda: Mater. Sci. Eng. A, 2016, vol. 665, pp. 175-83.

    Article  CAS  Google Scholar 

  23. [23] D. Bártková, M. Šmíd, B. Mašek, J. Svoboda and F. Šiška: Philos. Mag. Lett., 2017, vol. 97, pp. 379-85.

    Article  Google Scholar 

  24. A. Chlupová, I. Šulák, and J. Svoboda: Metals, 2020, submitted for publication.

  25. [25] M. Hillert: Acta Metall., 1965, vol. 13, pp. 227-37.

    Article  CAS  Google Scholar 

  26. [26] C.E. Pugh, D.N. Robinson: Nucl. Engng. Design, 1978, vol. 48, pp.269-276.

    Article  CAS  Google Scholar 

  27. [27] J.-L. Chaboche: Trans. ASME J. Appl. Mech., 1993, vol. 60, pp. 822-28.

    Article  Google Scholar 

  28. U.F. Kocks: J. Eng. Mater. Technol, 1976, vol. 98, pp. 76-85.

    Article  CAS  Google Scholar 

  29. [29] H. Mecking, U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865-1875.

    Article  CAS  Google Scholar 

  30. [30] F. Roters, D. Raabe and G. Gottstein: Acta Mater., 2000, vol. 48, pp. 4181-89.

    Article  CAS  Google Scholar 

  31. [31] L. Maire, J. Fausty, M. Bernacki, N. Bozzolo, P. De Micheli, C. Moussa: Materials and Design, 2018, vol. 146, pp. 194-207.

    Article  Google Scholar 

  32. MatCalc, the Materials Calculator, http://matcalc.tuwien.ac.at/.

  33. [33] D.G. Cram, H.S. Zurob, Y.J.M. Brechet, C.R. Hutchinson: Acta Mater., 2009, vol. 57, pp. 5218-5228.

    Article  CAS  Google Scholar 

  34. [34] R.A. Lebensohn, C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611-2624.

    Article  CAS  Google Scholar 

  35. [35] H.-R. Wenk, G. Canova, Y. Brechet, L. Flandin: Acta Mater., 1997, vol. 45, pp. 3283-3296

    Article  CAS  Google Scholar 

  36. [36] T. Walde, H. Riedel: Mater. Sci. Eng. A, 2007, vol. 443, pp. 277-284.

    Article  Google Scholar 

  37. [37] J. Svoboda, F.D. Fischer, P. Fratzl, E. Kozeschnik: Mater. Sci. Engng A, 2004, vol. 385, pp. 166-174.

    Google Scholar 

Download references

Acknowledgments

J.S. and V.H. gratefully acknowledge the financial support by the Czech Science Foundation in the frame of the Project 17-01641S.

Data Availability Statement

All data used in simulations are presented in the Tables I and II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Svoboda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 17, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svoboda, J., Horník, V. & Riedel, H. Modelling of Processing Steps of New Generation ODS Alloys. Metall Mater Trans A 51, 5296–5305 (2020). https://doi.org/10.1007/s11661-020-05949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05949-0

Navigation