Skip to main content
Log in

Triaxial Constraint and Tensile Strength Enhancement in Brazed Joints

  • Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A brazed joint consists of a low-melting point and thin interlayer sandwiched between the high-melting-point base materials, in which the interlayer strength is typically lower than that of the base material. When this butt-joined composite is loaded uniaxially in the direction perpendicular to the plane of the brazing layer, the tensile strength is found to be much higher than that of the braze. This seems to violate the iso-stress condition in such a butt-joint serial configuration. The stress triaxiality has been usually ascribed, but without a quantitative rationalization, as being responsible for this tensile strength enhancement. Here a complete finite element simulation has been conducted to study the dependence of triaxiality and strength enhancement on geometric and material parameters. Two asymptotic limit solutions (based on Bridgman and Xia–Shih solutions, respectively) have been identified to understand the simulation results. The critical role of void evolution has been revealed when making a quantitative comparison to available experiments. In addition, ductility of the brazed joint, which has not been fully addressed in literature, is investigated by the Gurson–Tvergaard–Needleman model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data contained in this paper are available upon request to the corresponding authors.

References

  1. R.S. Rosen and M.E. Kassner: ASM Handbook, ASM International, Cleveland, 1993, vol. 6, pp. 165–172.

    Google Scholar 

  2. American Welding Society (AWS) (2007) Brazing Handbook, American Welding Society, Miami.

    Google Scholar 

  3. T. Lienert, T. Siewert, S. Babu, and V. Acoff: ASM Handbook, ASM International, 2011, vol. 6A Welding Fundamentals and Processes.

  4. J.W. Lee, J.H. McMurray, and J.A. Miller: Welding J. 1985, vol. 64, pp. 18-21.

    Google Scholar 

  5. T. Zaharinie, R. Moshwan, F. Yusof, M. Hamdi, and T. Ariga: Mater. Des. 2014, vol. 54, pp. 375-381.

    Article  CAS  Google Scholar 

  6. R.K. Shiue, S.K. Wu, and S.H. Yang: Metall. Mater. Trans. A 2017, vol. 48, pp. 735-744.

    Article  Google Scholar 

  7. B.E. Riggs: Multi-scale computational modeling of Ni-base superalloy brazed joints for gas turbine applications. PhD Thesis, The Ohio State University, 2017.

  8. M. Gao, B. Schneiderman, S.M. Gilbert, and Z. Yu: Metall. Mater. Trans. A 2019, vol. 50, pp. 5117-5127.

    Article  Google Scholar 

  9. M. Way, J. Willingham, and R. Goodall: Int. Mater. Rev. 2020, vol. 65, pp. 257-285.

    Article  CAS  Google Scholar 

  10. S.K. Tung, L.C. Lim, and M.O. Lai: Scripta Mater. 1995, vol. 33, pp. 1253-1259.

    Article  CAS  Google Scholar 

  11. A. Elrefaey and W. Tillmann: J. Alloys Comp. 2009, vol. 487, pp. 639-645.

    Article  CAS  Google Scholar 

  12. J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Tech. 2013, vol. 213, pp. 20-29.

    Article  CAS  Google Scholar 

  13. A.J. West, H.J. Saxton, A.S. Tetelman, and C.R. Barrett: Metall. Trans. 1971, vol. 2, pp. 1009-1017.

    Article  CAS  Google Scholar 

  14. Y.H. Yu and M.O. Lai: J. Mater. Sci. 1995, vol. 30, pp. 2101-2107.

    Article  CAS  Google Scholar 

  15. J. Mackerle: Modelling Simul. Mater. Sci. Eng. 1997, vol. 5, pp. 159-185.

    Article  CAS  Google Scholar 

  16. Y.W. Lee, J.H. Kim, Y.S. Song, and C.S. Seok: Solid State Pheno. 2007, vols. 124-126, pp. 1673-1676.

    Article  Google Scholar 

  17. M.K. Ghovanlou, H. Jahed, and A. Khajepour: Eng. Fract. Mech. 2014, vol. 120, pp. 43-59.

    Article  Google Scholar 

  18. W. Jiang, W. Woo, and S.T. Tu: Mater. Des. 2015, vol. 72, pp. 63-71.

    Article  CAS  Google Scholar 

  19. V. Tvergaard: Adv. Appl. Mech. 1990, vol. 27, pp. 83-151.

    Article  Google Scholar 

  20. Z. Xue, M.G. Pontin, F.W. Zok, and J.W. Hutchinson: Eng. Frac. Mech. 2010, vol. 77, 492-509.

    Article  Google Scholar 

  21. K.L. Nielsen and V. Tvergaard: Eng. Fract. Mech. 2010, vol. 77, 1031-1047.

    Article  Google Scholar 

  22. A.A. Benzerga, J.-P. Leblond, A. Needleman, and V. Tvergaard: Int. J. Fract. 2016, vol. 201, pp. 29-80.

    Article  Google Scholar 

  23. Y.F. Gao, Z. Xue, and Z. Yu: Ext. Mech. Lett. 2020, vol. 37, 100728.

    Article  Google Scholar 

  24. K.M. Flores and R.H. Dauskardt: Acta Mater. 2001, vol. 49, pp. 2527–2537.

    Article  CAS  Google Scholar 

  25. W.D. Li, H. Bei, and Y.F. Gao: Intermetallics 2016, vol. 79, pp. 12-19.

    Article  CAS  Google Scholar 

  26. W.D. Li, Y.F. Gao, and H. Bei: Sci. Rep. 2016, vol. 6, 34878.

    Article  CAS  Google Scholar 

  27. Y.C. Zhao and Y.F. Gao: JOM 2020, vol. 72, pp. 877-882.

    Article  Google Scholar 

  28. L. Xia and C.F. Shih: J. Mech. Phys. Solids 1995, vol. 43, pp. 233-259.

    Article  Google Scholar 

  29. Y. Cui, Y.F. Gao, and H.B. Chew: Int. J. Solids Struct. 2020, vols. 200-201, pp. 188-197.

    Article  Google Scholar 

  30. Y.F. Gao, H.T. Xu, W.C. Oliver, and G.M. Pharr: J. Mech. Phys. Solids 2008, vol. 56, pp. 402-416.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the China Scholarship Council (XC), the US National Science Foundation DMR-1809640 (YFG) and CMMI-1847630 (ZZY), the Center for Materials Processing at University of Tennessee (XW), and the US Department of Energy, Office of Vehicle Technology, under a prime contract with Oak Ridge National Laboratory (WZ and ZLF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfei Gao, Wei Liu, Zhenzhen Yu or Zhili Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 12, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Gao, Y., Wang, X. et al. Triaxial Constraint and Tensile Strength Enhancement in Brazed Joints. Metall Mater Trans A 51, 5587–5596 (2020). https://doi.org/10.1007/s11661-020-05984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05984-x

Navigation