Skip to main content
Log in

Powder Metallurgy Production of Ti-2 Wt Pct Si Alloy: Structural, Mechanical, and Electrochemical Characterization of the Sintered Material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Several commercial alloys use silicon (Si) to improve titanium (Ti) resistance to creep and oxidation at high temperatures and to improve Ti corrosion resistance in acid media. According to the Ti-Si phase diagram, reported stable solid phases in the Ti-rich region are β-Ti, α-Ti, Ti3Si, and Ti5Si3. Nevertheless, very few works in the literature discuss Ti3Si intermetallic production. As such, this work studied the possibility of obtaining an α-Ti-Ti3Si alloy by hot pressing α-Ti supersaturated solid solution powders obtained by mechanical alloying. The consolidation of milled powders was performed using uniaxial hot press equipment. Structural and morphological evolutions during the sintering process were investigated by X-ray diffraction and scanning electron microscopy. Electrochemical behaviors of sintered samples were evaluated by open circuit potential and linear sweep voltammetry. Results show a fine and uniform Ti3Si alloy distribution in the α-Ti matrix produced by the proposed powder metallurgy route. The sintered samples demonstrated high micro-hardness and resistance to sulfuric acid corrosion. Additionally, Ti3Si was shown to have a significant hardening effect on the α-Ti matrix. Electrochemical behavior further demonstrates that a fine and homogeneous Ti3Si distribution in the α-Ti matrix contributes to a more stable superficial oxide layer against sulfuric acid corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Leyens, M. Peters: Titanium and titanium alloys. Wiley-Vch Verlag GmbH & Co, Weinheim, 2003.

    Book  Google Scholar 

  2. F.H. Froes: Titanium: physical metallurgy, processing and applications, ASM International, Ohio, 2015.

    Google Scholar 

  3. N.E. Paton and W Mohoney: Metall. Trans. A, 1976, vol. 7, pp. 1685–1694. 10.1007/BF02817886

    Article  Google Scholar 

  4. M.R. Winstone, R.D. Rawlings and D.R.F. West: J. Less-Common Met., 1975, vol. 39, pp. 205–217. 10.1016/0022-5088(75)90195-2

    Article  CAS  Google Scholar 

  5. C. Quesne, C. Duong, F. Charpentier, J.F. Fries and P. Lacombe: J. Less-Common Met., 1979, vol. 68, pp. 133–142. 10.1016/0022-5088(79)90049-3

    Article  CAS  Google Scholar 

  6. W. Jia, W. Zeng, Y. Zhou, J. Liu and Q. Wang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4068–4074. https://doi.org/10.1016/j.msea.2011.01.113

    Article  CAS  Google Scholar 

  7. A.M. Chaze and C. Coddet: Oxid. Met., 1987, vol. 27, pp. 1–20. 10.1007/BF00656726

    Article  CAS  Google Scholar 

  8. Z. Jiang, X. Dai and H. Middeton: Mater. Sci. Eng. B, 2011, vol. 176, pp. 79–86. 10.1016/j.mseb.2010.09.006

    Article  CAS  Google Scholar 

  9. K. Chou, P. Chu and E.A. Marquis: Corros. Sci., 2018, vol. 140, pp. 297–306. 10.1016/j.corsci.2018.05.035

    Article  CAS  Google Scholar 

  10. D. Guzmán, C. García, A. Soliz, R. Sepulveda, C. Aguilar, I. Iturriza and C. Luno-Bilbao: Metals, 2018, vol. 8, 417. 10.3390/met8060417

    Article  CAS  Google Scholar 

  11. H. Kim, W. Kim and S. Lim: Scr. Mater., 2006, vol. 54, pp. 887–891. 10.1016/j.scriptamat.2005.11.001

    Article  CAS  Google Scholar 

  12. H. Hsu, S. Wu, S. Hsu, Y. Li and W. Ho: Intermetallics, 2014, vol. 47, pp. 11–16. 10.1016/j.intermet.2013.12.004

    Article  CAS  Google Scholar 

  13. H. Hsu, S. Wu, S. Hsu, Y. Liao, and W. Ho: Mater. Des., 2016, vol. 104, pp. 205–210. 10.1016/j.matdes.2016.05.009

    Article  CAS  Google Scholar 

  14. H. Hsu, S. Wu, S. Hsu, Y. Liao and W. Ho: Bio-Med. Mater. Eng., 2017, vol. 28, pp. 503–514. 10.3233/BME-171693

    Article  CAS  Google Scholar 

  15. V. Saxena, V. Kumar, A. Rai, R. Yadav, U. Gupta, V. Singh and P. Manna: Mater. Res. Express, 2019, vol. 6, 075401. 10.1088/2053-1591/ab1280

    Article  CAS  Google Scholar 

  16. ASM International. ASM Handbook: Alloy Phase Diagrams, Vol. 3, ASM International, New York, 1992.

  17. Y. Zhan, X. Zhang, J. Hu, Q. Guo and Y. Du: J. Alloys Compd., 2009, vol. 479, pp. 246–251. 10.1016/j.jallcom.2009.01.017

    Article  CAS  Google Scholar 

  18. M. Ivanov, S. Manokhin, A. Kolobova: Russ. Phys. J., 2017, vol. 60, pp. 855–861. 10.1007/s11182-017-1149-9

    Article  CAS  Google Scholar 

  19. D. Vojtěch, H. Čížová and J. Maixner: Kovove Mater., 2005, vol. 43, pp. 317–337.

    Google Scholar 

  20. J. Nickel and K. Schweitzer: Z. MetaIlkd., 1970, vol. 61, pp. 54–61.

    Google Scholar 

  21. V. Svechnikov, Y. Kocherzhisky, L. Yupko, O. Kulik and E. Shishkin: Dokl. Akad. Nauk, 1970, vol. 193, pp. 393–396.

    CAS  Google Scholar 

  22. A. Ramos, C. Nunes and G. Coelho: Mater. Charact., 2006, vol. 56, pp. 107–111. 10.1016/j.matchar.2005.09.009

    Article  CAS  Google Scholar 

  23. A. da Silva-Costa, G. F. de Lima, G. Rodrigues, C. Nunes, G. Coelho and P. Suzuki: J. Phase Equilib. Diffus., 2010, vol. 31, pp. 22–27. https://doi.org/10.1007/s11669-009-9610-2

    Article  CAS  Google Scholar 

  24. Z. Li, C. Liao, Y. Liu, X. Wang, Y. Wu, M. Zhao, Z. Long and F. Yin: J. Phase Equilib. Diffus., 2014, vol. 35, pp. 564–574. 10.1007/s11669-014-0325-7

    Article  CAS  Google Scholar 

  25. V Amigó, F. Romero, M. Salvador and D. Busquets: Rev. Metal., 2007, vol. 43, pp. 434–447. 10.3989/revmetalm.2007.v43.i6.86

    Article  Google Scholar 

  26. F. Romero, V. Amigó, M. Salvador and A. Vicente: Mater. Sci. Forum, 2007, vol. 534-536, pp. 817–820. 10.4028/www.scientific.net/MSF.534-536.817

    Article  Google Scholar 

  27. G. Pribytkov, M. Vagner, V. Korzhova, E. Korosteleva, A. Gurskikh and I. Firsina: Powder Metall. Met. Ceram., 2014, vol. 52, pp. 613–619. 10.1007/s11106-014-9568-4

    Article  CAS  Google Scholar 

  28. H. Park, I. Oh, J. Jang, H. Shon, H. Kim and I. Shon: J. Ceram. Process. Res., 2016, vol. 17, pp. 191–196.

    Google Scholar 

  29. D. Handtrack, F. Despang, C Sauer, B. Kieback, N. Reinfried and Y. Grin: Mater. Sci. Eng. A, 2006, vol. 437, pp. 423–429. https://doi.org/10.1016/j.msea.2006.07.143

    Article  CAS  Google Scholar 

  30. S. Tkachenko, J. Cizek, R. Mušálek, K. Dvořák, Z. Spotz, E. Montufar, T. Chráska, I. Křupka and L. Čelko: J. Alloys Compd., 2018, vol. 764, pp. 776-788. 10.1016/j.jallcom.2018.06.086

    Article  CAS  Google Scholar 

  31. A. Kanaislová and P. Novák: Manufact Technol, 2018, vol. 18: pp. 411–17.

    Article  Google Scholar 

  32. P. Villars and L. Calvert: Pearson’s Handbook of crystallographic data for intermetallic phases, ASM international, Ohio, 1986.

    Google Scholar 

  33. C. Suryanarayana: Prog. Mater Sci., 2001, vol. 46, pp. 1–184. 10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  34. S. Saji, Y. Neishi, H. Araki, Y. Minamino and T. Yamane: Metall. and Mat. Trans. A, 1995, vol. 26, pp. 1305–07. 10.1007/BF02670624

    Article  CAS  Google Scholar 

  35. D. Guzmán, O. Rivera, C. Aguilar, S. Ordoñez, C. Martínez, D. Serafini and P. Rojas: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2071–2078. 10.1016/S1003-6326(13)62698-9

    Article  CAS  Google Scholar 

  36. A. Khajesarvi and G. Akbari: Metall. and Mat. Trans. A, 2016, vol. 47, pp. 1881–1888. 10.1007/s11661-016-3343-8

    Article  CAS  Google Scholar 

  37. C. Aguilar, F. Castro, V. Martínez, D. Guzmán, F. de Las-Cuevas, L. Lozada, N. Vielma: Mater. Sci. Eng. A, 2012, vol. 548, pp. 189–194. https://doi.org/10.1016/j.msea.2012.03.105

    Article  CAS  Google Scholar 

  38. A. Ahn, H. Chung, R. Watanabe and Y. Park: Mater. Sci. Forum, 1992, vol. 88-90, pp. 347–354. 10.4028/www.scientific.net/MSF.88-90.347

    Article  Google Scholar 

  39. D. Oleszak, M. Burzynska-Szyszko and H. Matyja: J. Mater. Sci. Lett., 1993, vol. 12, pp. 3–5. 10.1007/BF00275453

    Article  CAS  Google Scholar 

  40. M. Oehring and R. Bormann: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1330–1333. https://doi.org/10.1016/0921-5093(91)90984-u

    Article  Google Scholar 

  41. Y. Park, H. Hashimoto and R. Watanabe: Mater. Sci. Eng. A, 1994, vol. 181–182, pp. 1212–1216. https://doi.org/10.1016/0921-5093(94)90833-8

    Article  Google Scholar 

  42. J. Yang, J. Wu and W. Hua: Phys. B, 2000, vol. 279, pp. 241–245. 10.1016/S0921-4526(99)01228-4

    Article  CAS  Google Scholar 

  43. Y. Gu, L. Goi, A. Jarfors, D. Butler and C. Lim: Phys. B, 2004, vol. 32, pp. 299–304. 10.1016/j.physb.2004.08.001

    Article  CAS  Google Scholar 

  44. D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company Inc, New York, 1956.

    Google Scholar 

  45. P. Scherrer: Math. Phys. Klasse, 1918, vol. 2, pp. 98–100

    Google Scholar 

  46. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamum, J. Biomed. Mater. Res., 1990, vol. 24, pp. 721-734. 10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  47. A.M.G. Tavares, B.S. Fernandes, S.A. Souza, W.W. Batista, F.G.C. Cunha, R. Landers, M.C.S.S. Macedo: J. Alloys Compd., 2014, vol. 591, pp. 91-99. 10.1016/j.jallcom.2013.12.183

    Article  CAS  Google Scholar 

  48. M. Schlesinger, M. King, K. Sole and W. Davenpor: Extractive metallurgy of copper, Elsevier, Great Britain, 2011.

    Google Scholar 

  49. V. Krstić and B. Pešovski, Hydrometallurgy, 2019, vol. 185, pp. 71-75. 10.1016/j.hydromet.2019.01.018

    Article  CAS  Google Scholar 

  50. F. Simoes, B. Trindade, J. Santos and F. Froes: Mater. Technol., 2003, vol. 18, pp. 98–101. 10.1080/10667857.2003.11753021

    Article  CAS  Google Scholar 

  51. R. M. Wood: Proc. Phys. Soc., 1962, vol. 80, pp. 783–786. 10.1088/0370-1328/80/3/323

    Article  CAS  Google Scholar 

  52. M. Blanter, E. Granovskiy and L. Magalas: Mater. Sci. Eng. A, 2004, vol. 370, pp. 88-92. https://doi.org/10.1016/j.msea.2003.08.078

    Article  CAS  Google Scholar 

  53. K. Kashihara and H. Inagaki: Mater. Trans., 2009, vol. 50, pp 528-536. 10.2320/matertrans.L-MRA2008847

    Article  CAS  Google Scholar 

  54. T. Sreckovic: Adv. Sci. Tech., 2006, vol. 45, pp. 619-628. 10.4028/www.scientific.net/AST.45.619

    Article  CAS  Google Scholar 

  55. J. Zhu, A. Kamiya, T. Yamada, A. Watazu, W. Shi and K. Naganuma: Mater. Trans., 2001, vol. 42, pp. 336-41. 10.2320/matertrans.42.336

    Article  CAS  Google Scholar 

  56. Y. Santana, M. Tejera, M. Torrado, L. Baltes and J. Mirza: Bulletin of Transilvania University of Brasov, 2009, vol. 2, pp. 197-204.

    Google Scholar 

  57. D. Mareci, R. Chelariu, G. Bolat, A. Cailean, V. Grancea, D. Sutiman: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3829-3836. 10.1016/S1003-6326(13)62936-2

    Article  CAS  Google Scholar 

  58. J. Vaughan and A. Alfantazi: J. Electrochem. Soc., 2006, vol. 1, pp. B6-B12. 10.1149/1.2126580

    Article  CAS  Google Scholar 

  59. I. Toor (2016) Int. J. Electrochem. Sci., 11: 2897-2908.

    Article  CAS  Google Scholar 

  60. S. Guo, A. Chu, H. Wu, C. Cai and X. Qu: J. Alloys Compd., 2014, vol. 597, pp. 211-216. 10.1016/j.jallcom.2014.01.087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by FONDECYT [Project No. 1151204]. The authors wish to thank the Metallurgy Department of University of Atacama for the XRD, SEM, and DSC analyses [Projects EQM 130125, EQUV 003, and EQUR 16002] and the Pontifical Catholic University of Chile for the GD-OES analyses [Project EQM160091]. Additionally, Diego Muranda thanks the University of Atacama for the postgraduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Guzmán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 7, 2020; accepted September 1, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán, D., Muranda, D., Soliz, A. et al. Powder Metallurgy Production of Ti-2 Wt Pct Si Alloy: Structural, Mechanical, and Electrochemical Characterization of the Sintered Material. Metall Mater Trans A 51, 6461–6469 (2020). https://doi.org/10.1007/s11661-020-06015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06015-5

Navigation