Skip to main content

Advertisement

Log in

Design and Characterization of Al–Mg–Si–Zr Alloys with Improved Laser Powder Bed Fusion Processability

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A key-factor for the industrial implementation of beam-based additive manufacturing technologies is the development of novel Al alloys characterized by enhanced hot-tearing resistance. Indeed, most of the standard Al alloys are susceptible to solidification cracking and can hardly be used to produce structural parts by laser-based additive manufacturing processes. In this study, we investigate the strategies to design high-strength Al alloys for Laser Powder Bed Fusion. The addition of Zr to the chemical composition of an Al–Mg–Si alloy (EN AW 6182) was carried out by following two different routes to promote the formation of equiaxed grains which are able to suppress hot cracking and enhance processability of the material. The first route is based on mechanical mixing of ZrH2 particles and gas-atomized Al alloy powder and on the in-situ reaction of the hydride to form Al3Zr nucleants. The second route relies on the use of pre-alloyed gas-atomized powders that feature Zr among the alloy elements. The specimens produced using pre-alloyed powder showed the best mechanical performance. After direct aging from the as-built condition, the alloy showed yield strength and ultimate tensile strength of 354 and 363 MPa, respectively, and elongation at fracture of 9.0 pct. The achieved properties are comparable to those of wrought 6182 alloy processed by conventional routes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, p. 041101.

  2. M.N. Jahangir, M.A.H. Mamun, and M.P. Sealy: AIP Conf. Proc., https://doi.org/10.1063/1.5044305.

  3. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  4. D. Koutny, D. Palousek, L. Pantelejev, C. Hoeller, R. Pichler, L. Tesicky, and J. Kaiser: Materials (Basel). https://doi.org/10.3390/ma11020298.

  5. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature., 2017, vol. 549, pp. 365–9.

    Article  CAS  Google Scholar 

  6. S. Kou: JOM., 2003, vol. 55, pp. 37–42.

    Article  CAS  Google Scholar 

  7. S. Kou: in Welding Metallurgy, Second Edition, 2003.

  8. F. Belelli, R. Casati, M. Riccio, A. Rizzi, M.Y. Kayacan, and M. Vedani: Metals (Basel), 2021, pp. 11, 35.

  9. F. Belelli, R. Casati, F. Larini, M. Riccio, and M. Vedani: Mater. Sci. Eng. A, 2021, vol. 808, p. 140944.

  10. F. Belelli, A. Cartapani, R. Casati, and M. Vedani: Submitt. to Philos. Mag. Lett., 2021, pp. 1–11.

  11. M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, and J. Van Humbeeck: J. Mater. Process. Technol., 2016, vol. 238, pp. 437–45.

  12. R. Casati, M. Coduri, M. Riccio, A. Rizzi, and M. Vedani: J. Alloys Compd.. https://doi.org/10.1016/j.jallcom.2019.06.123.

  13. X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, and J.P. Kruth: Acta Mater., 2017, vol. 129, pp. 183–93.

    Article  CAS  Google Scholar 

  14. S.Y. Zhou, Y. Su, H. Wang, J. Enz, T. Ebel, and M. Yan: Addit. Manuf.. https://doi.org/10.1016/j.addma.2020.101458.

  15. H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng: Mater. Sci. Eng. A., 2016, vol. 656, pp. 47–54.

    Article  CAS  Google Scholar 

  16. H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, and X. Zeng: Scr. Mater., 2017, vol. 134, pp. 6–10.

    Article  CAS  Google Scholar 

  17. A.V. Koltygin, V.D. Belov, and V.E. Bazhenov: Russ. Metall., 2013, vol. 2013, pp. 66–70.

    Article  Google Scholar 

  18. M. Andersson, J. Appelberg, A. Tilliander, K. Nakajima, H. Shibata, S.Y. Kitamura, L. Jonsson, and P. Jönsson: ISIJ Int., 2006, vol. 46, pp. 814–23.

    Article  CAS  Google Scholar 

  19. BS EN ISO 11885:2007: 2009, p. 37.

  20. ASTM Committee on Mechanical Testing: ASTM Int., 2013, vol. ASTM Stds., pp. 1–28.

  21. ASTM International: 2020, pp. 1–27.

  22. J.D. Robson and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 599–613.

    Article  CAS  Google Scholar 

  23. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38, pp. 2552–63.

  24. K. Spierings, Adriaan Bernardus; Dawson, Karl; Kern, Kerstin; Palm, Frank; Wegener. https://doi.org/10.1016/j.msea.2017.06.089.

  25. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636–45.

    Article  CAS  Google Scholar 

  26. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi: Mater. Sci. Eng. A., 2017, vol. 704, pp. 218–28.

    Article  CAS  Google Scholar 

  27. X. Liu, C. Zhao, X. Zhou, Z. Shen, and W. Liu: Mater. Des., 2019, vol. 168, p. 107677.

  28. H. Qin, V. Fallah, Q. Dong, M. Brochu, M.R. Daymond, and M. Gallerneault: Mater. Charact., 2018, vol. 145, pp. 29–38.

    Article  CAS  Google Scholar 

  29. Y.N. Wen and J.M. Zhang: Solid State Commun., 2007, vol. 144, pp. 163–7.

    Article  CAS  Google Scholar 

  30. E. Clouet, J.M. Sanchez, and C. Sigli: Phys. Rev. B - Condens. Matter Mater. Phys., 2002, vol. 65, pp. 1–13.

  31. J.J. Marattukalam, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjörvarsson, and M. Sahlberg: Mater. Des.. https://doi.org/10.1016/j.matdes.2020.108852.

  32. P.A. Hooper: Addit. Manuf., 2018, vol. 22, pp. 548–59.

    CAS  Google Scholar 

  33. N. Kumar, S. Goel, R. Jayaganthan, and H.G. Brokmeier: Metallogr. Microstruct. Anal., 2015, vol. 4, pp. 411–22.

    Article  CAS  Google Scholar 

  34. Y. li JI, F. an GUO, and Y. feng PAN: Trans. Nonferrous Met. Soc. China (English Ed., 2008, vol. 18, pp. 126–31.

  35. N.C.W. Kuijpers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, and S. van der Zwaag: Mater. Sci. Eng. A., 2005, vol. 394, pp. 9–19.

    Article  Google Scholar 

  36. R. Casati, M.H. Nasab, M. Coduri, V. Tirelli, and M. Vedani: Metals (Basel)., 2018, vol. 8, p. 954.

    Article  CAS  Google Scholar 

  37. R. Casati and M. Vedani: Adv. Eng. Mater., 2019, vol. 21, pp. 1–7.

    Article  Google Scholar 

  38. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, and Y. Shi: Mater. Sci. Eng. A., 2016, vol. 663, pp. 116–25.

    Article  CAS  Google Scholar 

  39. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt: Mater. Sci. Eng. A., 2016, vol. 667, pp. 139–46.

    Article  CAS  Google Scholar 

  40. R. Casati, M. Coduri, S. Checchia, and M. Vedani: Mater. Charact., 2021, vol. 172, p. 110881.

  41. B.E. 755-2:2016 BSI Standard: Br. Stand. Inst

  42. F. Zupanič, M. Steinacher, S. Žist, and T. Bončina: Metals (Basel)., 2021, vol. 11, pp. 1–14.

    Article  Google Scholar 

  43. L. Donati, A. Segatori, M. El Mehtedi, and L. Tomesani: Int. J. Plast., 2013, vol. 46, pp. 70–81.

    Article  CAS  Google Scholar 

  44. K.L. Kendig and D.B. Miracle: Acta Mater., 2002, vol. 50, pp. 4165–75.

    Article  CAS  Google Scholar 

  45. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–35.

    Article  CAS  Google Scholar 

  46. B. Raeisinia, C.W. Sinclair, W.J. Poole, and C.N. Tomé: Model. Simul. Mater. Sci. Eng.. https://doi.org/10.1088/0965-0393/16/2/025001.

  47. G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia: Acta Mater., 2006, vol. 54, pp. 1759–66.

    Article  CAS  Google Scholar 

  48. H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Šachl, and H. Neuhäuser: Comput. Mater. Sci., 2007, vol. 39, pp. 106–12.

    Article  CAS  Google Scholar 

  49. R.C. Picu, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty: Mater. Sci. Eng. A., 2005, vol. 390, pp. 334–43.

    Article  Google Scholar 

  50. D.H. Johnson: 2012, pp. 50–57, 84–92.

  51. D. Wongsawaeng and S. Jaiyen: J. Nucl. Mater., 2010, vol. 403, pp. 19–24.

    Article  CAS  Google Scholar 

  52. W. Zhu, R. Wang, G. Shu, P. Wu, and H. Xiao: J. Phys. Chem. C., 2010, vol. 114, pp. 22361–8.

    Article  CAS  Google Scholar 

  53. Y. Li and D. Gu: Mater. Des., 2014, vol. 63, pp. 856–67.

    Article  CAS  Google Scholar 

  54. G. Lu and E. Kaxiras: Phys. Rev. Lett., 2005, vol. 94, pp. 1–4.

    Google Scholar 

  55. G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras: Phys. Rev. Lett., 2001, vol. 87, pp. 955011–4.

    Google Scholar 

Download references

Acknowledgments

The present research was partially funded by the EIT Raw Materials project SAMOA (Sustainable Aluminum Additive Manufacturing for high-performance applications, no. 18079). The Italian Ministry of Education, University and Research is acknowledged for the support provided through the Project "Department of Excellence LIS4.0 - Lightweight and Smart Structures for Industry 4.0. The Authors also acknowledge Andrea Cartapani and Lorenzo Montin for their support to the experiments.

Author contributions

Conceptualization, MV, RC and JV.; Data curation, FB; Formal Analysis, FB; Funding Acquisition, RC and JV; Investigation, FB; Methodology, RC and FB; Project administration, RC and MV; Resources: FB; Software, FB; Supervision, MV and RC; Validation, RC, MV and JV; Visualization, FB; Writing—Original Draft Preparation, FB and RC; Writing—Review & Editing, MV, RC and JV.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Casati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 4, 2021; accepted November 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belelli, F., Casati, R., Vedani, M. et al. Design and Characterization of Al–Mg–Si–Zr Alloys with Improved Laser Powder Bed Fusion Processability. Metall Mater Trans A 53, 331–343 (2022). https://doi.org/10.1007/s11661-021-06531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06531-y

Navigation