Skip to main content
Log in

The Effect of Grain Size Gradient on Plastic Deformation of Gradient Aluminum

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain size gradient materials exhibit superior strength and ductility due to their multiscale microstructures. A dislocation-based multiscale model was applied to study the effect of grain size gradient on the flow stress and deformation of gradient Aluminum. It is found that the grain orientation has a slight effect on the macroscopic behavior of gradient Aluminum, but without a strong texture fiber, such effect is neglectable. The strength depends not only on the average grain size but also on the grain size gradient. By varying the grain size gradient in the region connecting finest 200 nm grains and coarse grains in tens of microns, we found that the plastic flow stress is inverse proportional to the grain size gradient. A smooth transit could lead to a redistribution of the stress concentration and strain localization. The results on the deformation of different grain size gradients Aluminum shed light on processing gradient materials with an improved combination of strength–ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Lu: Science (80- ), 2014, vol. 345, pp. 1455–56.

    Article  CAS  Google Scholar 

  2. Y. Zhu and X. Wu: Mater. Res. Lett., 2019, vol. 7, pp. 393–98.

    Article  CAS  Google Scholar 

  3. E. Ma and T. Zhu: Mater. Today, 2017, vol. 20, pp. 323–31.

    Article  CAS  Google Scholar 

  4. X. Wu and Y. Zhu: Mater. Res. Lett., 2017, vol. 5, pp. 527–32.

    Article  CAS  Google Scholar 

  5. K. Lu: Jinshu Xuebao/Acta Metall. Sin., 2015, vol. 51, pp. 1–10.

    Google Scholar 

  6. T.O. Olugbade and J. Lu: Nano Mater. Sci., 2020, vol. 2, pp. 3–31.

    Article  Google Scholar 

  7. Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, and H. Hahn: Mater. Sci. Eng. A, 2016, vol. 664, pp. 247–56.

    Article  CAS  Google Scholar 

  8. J.Y. Kang, J.G. Kim, H.W. Park, and H.S. Kim: Sci. Rep., 2016, vol. 6, pp. 1–10.

    Article  CAS  Google Scholar 

  9. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu: Science (80- ), 2011, vol. 331, pp. 1587–90.

    Article  CAS  Google Scholar 

  10. Z. Yin, X. Yang, X. Ma, J. Moering, J. Yang, Y. Gong, Y. Zhu, and X. Zhu: Mater. Des., 2016, vol. 105, pp. 89–95.

    Article  CAS  Google Scholar 

  11. Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, and Y. Li: Acta Mater., 2018, vol. 153, pp. 279–89.

    Article  CAS  Google Scholar 

  12. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu: Proc. Natl Acad. Sci. USA, 2014, vol. 111, pp. 7197–7201.

    Article  CAS  Google Scholar 

  13. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu: Mater. Res. Lett., 2014, vol. 2, pp. 185–91.

    Article  CAS  Google Scholar 

  14. Y. Liu, B. Jin, and J. Lu: Mater. Sci. Eng. A, 2015, vol. 636, pp. 446–51.

    Article  CAS  Google Scholar 

  15. P. Jiang, J. Lu, and X.L. Wu: Mater. Sci. Forum, 2011, vol. 667–669, pp. 175–79.

    Google Scholar 

  16. X. Yang, H. Pan, J. Zhang, H. Gao, B. Shu, Y. Gong, and X. Zhu: Mater. Trans., 2019, vol. 60, pp. 1543–52.

    Article  CAS  Google Scholar 

  17. P. Cao: Nano Lett., 2020, vol. 20, pp. 1440–46.

    Article  CAS  Google Scholar 

  18. J. Zhao, X. Lu, F. Yuan, Q. Kan, S. Qu, G. Kang, and X. Zhang: Int. J. Plast., 2020, vol. 125, pp. 314–30.

    Article  Google Scholar 

  19. Z. Zeng, X. Li, D. Xu, L. Lu, H. Gao, and T. Zhu: Extreme Mech. Lett., 2016, vol. 8, pp. 213–19.

    Article  Google Scholar 

  20. Z. Li and F. Yang: Extreme Mech. Lett., 2017, vol. 16, pp. 41–48.

    Article  Google Scholar 

  21. X. Lu, X. Zhang, M. Shi, F. Roters, G. Kang, and D. Raabe: Int. J. Plast., 2019, vol. 113, pp. 52–73.

    Article  CAS  Google Scholar 

  22. H. Lyu, A. Ruimi, D.P. Field, and H.M. Zbib: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6608–20.

    Article  CAS  Google Scholar 

  23. X.C. Liu, H.W. Zhang, and K. Lu: Scripta Mater., 2015, vol. 95, pp. 54–57.

    Article  CAS  Google Scholar 

  24. H. Lyu, M. Hamid, A. Ruimi, and H.M. Zbib: Int. J. Plast., 2017, vol. 97, pp. 46–63.

    Article  CAS  Google Scholar 

  25. E. Orowan: Proc. Phys. Soc., 1940, vol. 52, pp. 8–22.

    Article  Google Scholar 

  26. J.E. Bailey and P.B. Hirsch: Philos. Mag., 1960, vol. 5, no. 53, pp. 485–97.

    Article  CAS  Google Scholar 

  27. H. Lyu, N. Taheri-Nassaj, and H.M. Zbib: Philos. Mag., 2016, vol. 96, pp. 1883–1908.

    Article  CAS  Google Scholar 

  28. J.P. Hirth: Philos. Mag., 2006, vol. 86, pp. 3959–63.

    Article  CAS  Google Scholar 

  29. D. Liu, Y. He, B. Zhang, and L. Shen: Acta Mater., 2014, vol. 80, pp. 350–64.

    Article  CAS  Google Scholar 

  30. S.S. Chakravarthy and W.A. Curtin: Proc. Natl Acad. Sci. USA, 2011, vol. 108, pp. 15716–20.

    Article  CAS  Google Scholar 

  31. N. Taheri-Nassaj and H.M. Zbib: Int. J. Plast., 2015, vol. 74, pp. 1–6.

    Article  Google Scholar 

  32. J.F. Nye: Acta Metall., 1953, vol. 1, pp. 153–62.

    Article  CAS  Google Scholar 

  33. J. Luster and M.A. Morris: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1745–56.

    Article  CAS  Google Scholar 

  34. T.R. Bieler, P. Eisenlohr, C. Zhang, H.J. Phukan, and M.A. Crimp: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 212–26.

    Article  CAS  Google Scholar 

  35. J. Shi and M.A. Zikry: J. Mater. Res., 2011, vol. 26, pp. 1676–87.

    Article  CAS  Google Scholar 

  36. T. Mura: Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, Boston, 2012.

    Google Scholar 

  37. H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworth & Co., London, 2013.

    Google Scholar 

  38. W.F. Hosford, R.L. Fleischer, and W.A. Backofen: Acta Metall., 1960, vol. 8, pp. 187–99.

    Article  CAS  Google Scholar 

  39. M.G. Lee, H. Lim, B.L. Adams, J.P. Hirth, and R.H. Wagoner: Int. J. Plast., 2010, vol. 26, pp. 925–38.

    Article  CAS  Google Scholar 

  40. D. Li, H. Zbib, X. Sun, and M. Khaleel: Int. J. Plast., 2014, vol. 52, pp. 3–17.

    Article  CAS  Google Scholar 

  41. N. Kermanshahimonfared, H. Askari, and I. Mastorakos: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 400–09.

    Article  CAS  Google Scholar 

  42. J.W. Wyrzykowski and M.W. Grabski: Philos. Mag. A, 1986, vol. 53, pp. 505–20.

    Article  CAS  Google Scholar 

  43. H. Adachi, Y. Miyajima, M. Sato, and N. Tsuji: Keikinzoku/J. Jpn Inst. Light Met., 2014, vol. 64, pp. 463–69.

    Article  CAS  Google Scholar 

  44. R. Valiev: Nat. Mater., 2004, vol. 3, pp. 511–16.

    Article  CAS  Google Scholar 

  45. T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035–59.

    Article  CAS  Google Scholar 

  46. S. Shahrezaei, Y. Sun, and S.N. Mathaudhu: Mater. Sci. Eng. A, 2019, vol. 761, 138023.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China for Young Researcher (Nos. 52101008) and the Fundamental Research Funds for the Central Universities (Nos. 3132022176). The statements made herein are solely the responsibility of the authors.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The fitting of parameters q1–q7 with the evolution equations to [001] orientation tensile of single-crystal Aluminum is shown in Figure 7 (the red line). Then the set of parameters was adjusted based on the standard deviation of stress from simulations and experiments (the blue and purple line) from [111] loading directions in Figure 7.

Fig. 7
figure 7

Stress–strain curves of tensile tests of single-crystal Aluminum (Color figure online)

Appendix 2

The equivalent plastic strain and mobile dislocation contour of homogeneous case with equivalent grain size are plotted on interpolation with a natural function with samples straining to 15 pct (Figure 8 ).

Fig. 8
figure 8

Contour plots of (a) equivalent plastic strain and (b) mobile dislocation density for homogeneous case at strain 15 pct

Tensile simulations of two homogeneous microstructure cases with identical regions but different numbers of grains (different average grain sizes, 3.5 and 50 μm, respectively). As shown in Figure 9 , the case with a smaller average grain size would have much higher strength but less strain hardening than the larger average grain size case. The average dislocation density in larger grains is much higher than that in smaller grains.

Fig. 9
figure 9

(a) Stress–strain curves, and (b) total mobile dislocation density for homogeneous microstructure with average grain size 3.5 and 50 μm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, H., Zhang, Y. & Li, H. The Effect of Grain Size Gradient on Plastic Deformation of Gradient Aluminum. Metall Mater Trans A 53, 3428–3440 (2022). https://doi.org/10.1007/s11661-022-06758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06758-3

Navigation