Skip to main content
Log in

Phase Stability and Deformation Modes in Functionally Graded Metastable Austenitic Stainless Steel; A Novel Approach to Evaluate the Role of Nitrogen

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An austenitic stainless steel AISI 304 plate was functionally graded by interstitial alloying with nitrogen by high-temperature solution nitriding, resulting in a symmetrical nitrogen concentration profile over the plate thickness. The responses to plastic deformation and austenite stability were investigated by applying cold rolling up to 70 pct overall thickness reduction of the plate. Electron probe microanalysis, X-ray diffraction, electron microscopy, and hardness indentation were applied for characterization of the evolutions of nitrogen concentration profile, phase distribution, deformation microstructure, and hardness developing upon plastic deformation. The results demonstrate that the critical nitrogen content necessary to prevent deformation-induced martensite formation increases in the low-to-medium strain range, while it dramatically increases at high strain levels. With increasing nitrogen content, the dominant deformation mode evolves from deformation-induced martensite formation to a mixture of martensite and twin formation, and, eventually twinning and dislocation glide. The plastic strain regimes for the various deformation modes depend strongly on the nitrogen content. The results are discussed in relation to the effect of nitrogen content on the stacking fault energy of austenite in Fe–Cr–Ni alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R Rep., 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  2. A. Hedayati, A. Najafizadeh, A. Kermanpur, and F. Forouzan: J. Mater. Process. Technol., 2010, vol. 210, pp. 1017–22.

    Article  CAS  Google Scholar 

  3. A. Das, P.C. Chakraborti, S. Tarafder, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2011, vol. 27, pp. 366–70.

    Article  Google Scholar 

  4. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.

    Article  CAS  Google Scholar 

  5. Y.F. Shen, Y.D. Wang, X.P. Liu, X. Sun, R. Lin Peng, S.Y. Zhang, L. Zuo, and P.K. Liaw: Acta Mater., 2013, vol. 61, pp. 6093–6106.

    Article  CAS  Google Scholar 

  6. T. Tsuchiyama, H. Takebe, K. Tsuboi, and S. Takaki: Scr. Mater., 2010, vol. 62, pp. 731–34.

    Article  CAS  Google Scholar 

  7. T. Tsuchiyama, K. Tsuboi, S. Iwanaga, T. Masumura, A. Macadre, N. Nakada, and S. Takaki: Scr. Mater., 2014, vol. 90, pp. 14–16.

    Article  Google Scholar 

  8. N. Solomon and I. Solomon: Eng. Fail. Anal., 2017, vol. 79, pp. 865–75.

    Article  CAS  Google Scholar 

  9. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345–51.

    Article  Google Scholar 

  10. Y. Tian, O.I. Gorbatov, A. Borgenstam, A.V. Ruban, and P. Hedström: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 1–7.

    Article  CAS  Google Scholar 

  11. T. Masumura, N. Nakada, T. Tsuchiyama, S. Takaki, T. Koyano, and K. Adachi: Acta Mater., 2015, vol. 84, pp. 330–38.

    Article  CAS  Google Scholar 

  12. B. Wang, C. Hong, G. Winther, T.L. Christiansen, and M.A.J. Somers: Materialia, 2020, vol. 12, p. 100751.

    Article  CAS  Google Scholar 

  13. M.A.J. Somers: in Proceedings of the 26th IFHTSE Congress, Moscow, 2019, pp. 22–29.

  14. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  15. J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  16. M.O. Speidel: Materwiss. Werksttech., 2006, vol. 37, pp. 875–80.

    Article  CAS  Google Scholar 

  17. M.O. Speidel: Inst. Met. London, 1989, p. 92.

  18. T.H. Lee, C.S. Oh, and S.J. Kim: Scr. Mater., 2008, vol. 58, pp. 110–13.

    Article  CAS  Google Scholar 

  19. A. Kundu, D.P. Field, and P. Chandra Chakraborti: Mater. Sci. Eng. A, 2020, vol. 773, p. 138854.

    Article  CAS  Google Scholar 

  20. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.

    Article  Google Scholar 

  21. T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.

    Article  CAS  Google Scholar 

  22. K.V. Werner, F. Niessen, M. Villa, and M.A.J. Somers: Appl. Phys. Lett., 2021, vol. 119, pp. 141902-1-41902–6.

    Google Scholar 

  23. L. Vitos, J.O. Nilsson, and B. Johansson: Acta Mater., 2006, vol. 54, pp. 3821–26.

    Article  CAS  Google Scholar 

  24. J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

    Article  CAS  Google Scholar 

  25. J. Lu, L. Hultman, E. Holmström, K.H. Antonsson, M. Grehk, W. Li, L. Vitos, and A. Golpayegani: Acta Mater., 2016, vol. 111, pp. 39–46.

    Article  CAS  Google Scholar 

  26. A. Das: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, pp. 748–68.

    Article  CAS  Google Scholar 

  27. H. Berns: ISIJ Int., 1996, vol. 36, pp. 909–14.

    Article  CAS  Google Scholar 

  28. H. Berns and S. Siebert: 1996, vol. 36, pp. 927–31.

  29. F. Bottoli, G. Winther, T.L. Christiansen, K.V. Dahl, and M.A.J. Somers: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, pp. 4146–59.

    Article  CAS  Google Scholar 

  30. R.D. Arnell: J. Iron Steel Inst., 1968, pp. 1035–36.

  31. R.W. Hinton: J. Test. Eval., 1987, vol. 15, pp. 95–100.

    Article  CAS  Google Scholar 

  32. H. Pawelski: J. Mater. Process. Technol., 2002, vol. 125–126, pp. 392–97.

    Article  Google Scholar 

  33. W. Lehnert and R. Kawalla: Steel Res. Int., 2005, vol. 76, pp. 142–47.

    Article  Google Scholar 

  34. X.F. Fang and W. Dahl: Mater. Sci. Eng. A, 1991, vol. 141, pp. 189–98.

    Article  Google Scholar 

  35. B. Ravi Kumar, A.K. Singh, S. Das, and D.K. Bhattacharya: Mater. Sci. Eng. A, 2004, vol. 364, pp. 132–39.

    Article  Google Scholar 

  36. M. Hadji and R. Badji: J. Mater. Eng. Perform., 2002, vol. 11, pp. 145–51.

    Article  CAS  Google Scholar 

  37. V. Shrinivas, S.K. Varma, and L.E. Murr: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 661–71.

    Article  CAS  Google Scholar 

  38. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13, pp. 627–35.

    Article  CAS  Google Scholar 

  39. C. Donadille, R. Valle, P. Dervin, and R. Penelle: Acta Metall., 1989, vol. 37, pp. 1547–71.

    Article  CAS  Google Scholar 

  40. H. Schumann: Pract. Metallogr., 1989, vol. 26, pp. 335–52.

    Article  Google Scholar 

  41. P.G. McDougall and C.M. Wayman: ASM Int. Martensite, 1992, 1992, pp. 59–95.

  42. M. Villa and M.A.J. Somers: Scr. Mater., 2018, vol. 142, pp. 46–49.

    Article  CAS  Google Scholar 

  43. M. Villa and M.A.J. Somers: HTM J. Heat Treat. Mater., 2020, vol. 75, pp. 263–86.

    Google Scholar 

  44. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.

    Article  CAS  Google Scholar 

  45. V.G. Gavriljuk, H. Berns, C. Escher, N.I. Glavatskaya, A. Sozinov, and Y.N. Petrov: Mater. Sci. Forum, 1999, vol. 318, pp. 455–60.

    Article  Google Scholar 

  46. P. Müllner, C. Solenthaler, P. Uggowitzer, and M.O. Speidel: Mater. Sci. Eng. A, 1993, vol. 164, pp. 164–69.

    Article  Google Scholar 

  47. V. Gavriljuk, Y. Petrov, and B. Shanina: Scr. Mater., 2006, vol. 55, pp. 537–40.

    Article  CAS  Google Scholar 

  48. M. Ojima, Y. Adachi, Y. Tomota, Y. Katada, Y. Kaneko, K. Kuroda, and H. Saka: Steel Res. Int., 2009, vol. 80, pp. 477–81.

    CAS  Google Scholar 

  49. X. Sun, S. Lu, R. Xie, X. An, W. Li, T. Zhang, C. Liang, X. Ding, Y. Wang, H. Zhang, and L. Vitos: Mater. Des., 2021, vol. 199, p. 109396.

    Article  CAS  Google Scholar 

  50. I.A. Yakubtsov, A. Ariapour, and D.D. Perovic: Acta Mater., 1999, vol. 47, pp. 1271–79.

    Article  CAS  Google Scholar 

  51. S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2006, vol. 54, pp. 2991–3001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Independent Research Fund Denmark under Grant Number 9041-00145B is gratefully acknowledged. The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 713683 (COFUNDfellowsDTU) and No. 841108 (MSCA-IF).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Werner, K.V., Villa, M. et al. Phase Stability and Deformation Modes in Functionally Graded Metastable Austenitic Stainless Steel; A Novel Approach to Evaluate the Role of Nitrogen. Metall Mater Trans A 54, 590–604 (2023). https://doi.org/10.1007/s11661-022-06904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06904-x

Navigation