Skip to main content
Log in

Temperature-Dependent Thermal and Mechanical Properties of a Wire Arc Additively Manufactured Low Transformation Temperature Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent research has studied the use of low transformation temperature (LTT) martensite steel as feedstock for wire arc additive manufacturing (WAAM) and low tensile residual stresses or compressive residual stresses were detected in the printed walls. These residual stress states help to improve printed product properties such as fatigue strength and corrosion resistance. However, the thermal and mechanical properties of WAAM printed LTT martensite steel walls are largely unknown. In this work, a printed LTT martensite steel was characterized for its thermal, metallurgical, and mechanical behavior at room and elevated temperatures. The temperature-dependent specific heat capacity, thermal expansion, atomic lattice spacing, and tensile properties were measured during both heating and cooling and related to observed microstructural features and computational thermodynamics predictions. These results revealed a large hysteresis in the martensitic transformation, with a martensite start temperature of 240 °C and austenite start temperature of 680 °C. Additional thermal cycles and specimen orientation did not affect the printed specimen austenite and martensite transformations. However, it was observed that the printed metal may exhibit tempering embrittlement at about 350 °C but further studies are needed to confirm that. These results suggest that a temperature control of 250 °C to 350 °C during WAAM is needed to maximize the stress reduction potential of the LTT250 martensite steel. Opportunities for future implementation of LTT martensite steels and optimization of additive manufacturing process conditions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Sui, C.A. Zorman, and R.M. Sankaran: Plasma Processes Polym., 2020, vol. 17, p. 2000009.

    Article  CAS  Google Scholar 

  2. A. Dass and A. Moridi: Coatings, 2019, vol. 9(418), pp. 1–26.

    Google Scholar 

  3. C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, and S.T. Newman: Addit. Manuf., 2018, vol. 22, pp. 672–86.

    Google Scholar 

  4. G.C. Anzalone, C. Zhang, B. Wijnen, P.G. Sanders, and J.M. Pearce: IEEE Access, 2013, vol. 1, pp. 803–10.

    Article  Google Scholar 

  5. J.O. Milewski: Additive Manufacturing of Metals, Springer, Cham, 2017, pp. 85–97.

    Google Scholar 

  6. M.A. Jackson, A. Van Asten, J.D. Morrow, S. Min, and F.E. Pfefferkorn: Procedia Manuf., 2016, vol. 5, pp. 989–1005.

    Article  Google Scholar 

  7. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, and P. Colegrove: Mater. Sci. Technol., 2016, vol. 32, pp. 641–47.

    Article  CAS  Google Scholar 

  8. E. Aldalur, F. Veiga, A. Suárez, J. Bilbao, and A. Lamikiz: J. Manuf. Processes, 2020, vol. 58, pp. 615–26.

    Article  Google Scholar 

  9. K. Li, M.A. Klecka, S. Chen, and W. Xiong: Addit. Manuf., 2021, vol. 37, 101734.

    CAS  Google Scholar 

  10. Q. Wu, T. Mukherjee, A. De, and T. DebRoy: Addit. Manuf., 2020, vol. 35, 101355.

    Google Scholar 

  11. A.V. Nemani, M. Ghaffari, S. Salahi, J. Lunde, and A. Nasiri: Mater. Chem. Phys., 2021, vol. 266, p. 124555.

    Article  Google Scholar 

  12. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M. Sequeira Almeida, F. Wang, and S. Williams: Comput. Mater. Sci., 2011, vol. 50, pp. 3315–22.

    Article  CAS  Google Scholar 

  13. K. Masubuchi: Analysis of Welded Structures: Residual Stresses, Distortion, and THEIR Consequences, Elsevier, Elmsford, 2013.

    Google Scholar 

  14. T. Mukherjee, W. Zhang, and T. DebRoy: Comput. Mater. Sci., 2017, vol. 126, pp. 360–72.

    Article  CAS  Google Scholar 

  15. L. Wang, J. Xue, and Q. Wang: Mater. Sci. Eng. A, 2019, vol. 751, pp. 183–90.

    Article  CAS  Google Scholar 

  16. J. Zhang, X. Wang, S. Paddea, and X. Zhang: Mater. Des., 2016, vol. 90, pp. 551–61.

    Article  CAS  Google Scholar 

  17. X. Chen, Xu. Jia Li, H.W. Cheng, and Z. Huang: Mater. Sci. Eng. A, 2018, vol. 715, pp. 307–14.

    Article  CAS  Google Scholar 

  18. C.Z. Li, Y. Liu, X.Y. Fang, and Y.B. Guo: Procedia CIRP, 2018, vol. 71, pp. 348–53.

    Article  Google Scholar 

  19. A. Ohta, N. Suzuki, Y. Maeda, K. Hiraoka, and T. Nakamura: Int. J. Fatigue, 1999, vol. 21, pp. S113-18.

    Article  CAS  Google Scholar 

  20. G. Çam, O. Özdemir, and M. Koçak: Proceedings of the 63rd Annual Assembly & International Conference of the International Institute of Welding, 2010, Istanbul, Turkey, pp. 759–65.

  21. S.W. Ooi, J.E. Garnham, and T.I. Ramjaun: Mater. Des., 2014, vol. 56, pp. 773–81.

    Article  CAS  Google Scholar 

  22. A. Ohta, N. Suzuki, Y. Maeda, and S.J. Maddox: Weld. World, 2003, vol. 47, pp. 38–43.

    Article  CAS  Google Scholar 

  23. J.T. Eckerlid, T. Nilsson, and L. Karlsson: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 353–59.

    Article  Google Scholar 

  24. J.A. Francis, H.J. Stone, S. Kundu, H.K.D.H. Bhadeshia, R.B. Rogge, P.J. Withers, and L. Karlsson: J. Press. Vessel Technol., 2009, vol. 131, pp. 041401–1-41401-08.

    Article  Google Scholar 

  25. L. Karlsson, L. Mráz, H.K.D.H. Bhadeshia, and A.A. Shirzadi: in Advanced Welding Technologies, 19–21 October 2010, Sosnowiec, Poland.

  26. N. Sridharan, J. Bunn, M. Kottman, C.M. Fancher, A. Payzant, M. Noakes, A. Nycz, L. Love, B. Narayanan, and S.S. Babu: Addit. Manuf., 2021, vol. 39, pp. 101837-1–01837-11.

    Google Scholar 

  27. W. Chen, L. Xu, Y. Han, L. Zhao, and H. Jing: Addit. Manuf., 2021, vol. 42, pp. 102016-1–02016-14.

    Google Scholar 

  28. K. An, H.D. Skorpenske, A.D. Stoica, D. Ma, X.L. Wang, and E. Cakmak: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 95–99.

    Article  Google Scholar 

  29. K. An, Y. Chen, and A.D. Stoica: MRS Bull., 2019, vol. 44, pp. 878–85.

    Article  Google Scholar 

  30. K. An: ORNL Report, 2012, ORNL-TM-2012-621.

  31. D. Yu, Y. Chen, L. Huang, and K. An: Curr. Comput. Aid. Drug Des., 2018, vol. 8, p. 360.

    Google Scholar 

  32. D.E. Laughlin: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 2555–69.

    Article  Google Scholar 

  33. M. Acarer, S. Keskinkılıç, F. Kabakcı, F. K. Acar, and U. Ozdemir: Researchgate Publication, 354463727.

  34. H.K.D.H. Bhadeshia: Tempered Martensite. http://www.phase-trans.msm.cam.ac.uk/2004/Tempered.Martensite/tempered.martensite.html.

  35. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.

    Article  Google Scholar 

  36. A.N. Isfahany, H. Saghafian, and G. Borhani: J. Alloys Compd., 2011, vol. 509, pp. 3931–36.

    Article  CAS  Google Scholar 

  37. R.M. Horn and R.O. Ritchie: Metall. Trans. A, 1978, vol. 9, pp. 1039–53.

    Article  Google Scholar 

  38. F. Cverna: ASM Ready Reference: Thermal Properties of Metals, ASM International, Materials Park, OH, 2002.

  39. C. Körner, M. Markl, and J.A. Koepf: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 4970–83.

    Article  Google Scholar 

  40. TWI: What is tempering embrittlement, and how can it be controlled. https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-temper-embrittlement-and-how-can-it-be-controlled#:~:text=Temper%20embrittlement%20refers%20to%20the,exposure%20to%20this%20temperature%20range.

  41. T. Sugiyama, N. Hatori, S. Yamamoto, F. Yoshino, and A. Kiuchi: IIW Doc. XII-E-6-81, IIW, 1981.

  42. W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, and T. DebRoy: Int. J. Heat Mass Transf., 2018, vol. 127, pp. 1084–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is sponsored by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. The authors gratefully acknowledge the ORNL LDRD Digital Metallurgy initiative lead Amit Shyam, Ian Stinson for specimens cutting, Victoria Cox and Sarah Graham for metallographic specimen preparation, Roger Miller and QQ Ren at ORNL, and Prof. Xiaoli Tan at Iowa State University for valuable discussions, and Sumit Bahl and Xiang Chen for technical reviewing.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Tang or Alex Plotkowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DEAC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Fancher, C.M., Nandwana, P. et al. Temperature-Dependent Thermal and Mechanical Properties of a Wire Arc Additively Manufactured Low Transformation Temperature Steel. Metall Mater Trans A 54, 854–868 (2023). https://doi.org/10.1007/s11661-022-06933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06933-6

Navigation