Skip to main content
Log in

Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag–gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\( C_{D} \) :

drag coefficient

D :

cylinder diameter

\( D_{o} \) :

outlet diameter of the cylinder

\( D_{b} \) :

bubble diameter

\( d_{o} \) :

outer diameter of the lance

\( d_{i} \) :

inner diameter of the lance

f :

body force vector

g :

gravitational body force

\( H^{'} \) :

lance submergence Level

k :

turbulent kinetic energy

\( L^{'} \) :

liquid level in the cylinder

L :

distance from the lance tip to bottom of the furnace

l :

vertical depth from the lance tip

N :

number of phases

\( Q_{a} \) :

air flow rate through lance

\( Q_{f} \) :

fuel flow rate through lance

\( Re_{\text{b}} \) :

bubble Reynolds number

R :

radius of the cylindrical vessel

r :

radial distance from the centre point

\( T_{k}^{t} \) :

phase k Reynolds stress

v :

velocity vector

X :

radial coordinate

Y :

tangential coordinate

Z :

axial coordinate

\( \mu_{k} \) :

molecular viscosity

\( \mu_{k}^{t} \) :

turbulent viscosity for phase k

\( \mu_{c}^{t,SI} \) :

shear induced turbulent viscosity for continuous phase

\( \mu_{c}^{t,BI} \) :

bubble induced turbulent viscosity for continuous phase

\( \alpha_{k} \) :

volume fraction of phase k

\( \rho_{k} \) :

density for phase k

\( \tau_{k} \) :

phase k shear stress

\( \delta_{k} \) :

Kronecker delta function

\( \varepsilon_{k} \) :

dissipation rate

References

  1. R.G. Reddy, V.L. Prabhu, and D. Mantha: High Temp. Mater. Proc., 2003, vol. 21, no. 6, pp. 377-86.

    Article  Google Scholar 

  2. C.Y. Choi and Y.H. Lee: REWAS—Global Symposium on Recycling, Waste Treatment and Clean Technology, San Sebastian, Spain, 1999.

  3. G.G. Richards, J.K. Brimacombe, and G.W. Toop: Metall. Trans. B, 1985, vol. 16B, pp. 513-27.

    Article  CAS  Google Scholar 

  4. G.G. Richards and J.K. Brimacombe: Metall. Trans. B, 1985, vol. 16B, pp. 529-40.

    Article  CAS  Google Scholar 

  5. G.G. Richards and J.K. Brimacombe: Metall. Trans. B, 1985, vol. 16B, pp. 541-49.

    Article  CAS  Google Scholar 

  6. R. Suzuki, S. Goto, and K. Azuma: J. Facul. Eng., Univ. Tokyo (B), 1970, vol. 30, no. 3, pp. 247-87.

    CAS  Google Scholar 

  7. S.L. Cockcroft, G.G. Richards, and J.K. Brimacombe: Can. Metall. Q., 1988, vol. 27, no. 1, pp. 27-40.

    CAS  Google Scholar 

  8. S.L. Cockcroft, G.G. Richards, and J.K. Brimacombe: Metall. Trans. B, 1989, vol. 20B, pp. 227-35.

    CAS  Google Scholar 

  9. G.G. Richards: EPD Congress, TMS, Warrendale, PA, 1994, pp. 525-37.

    Google Scholar 

  10. K.E. Scholey, G.G. Richards, and I.V. Samarasekera: Metall. Trans. B, 1991, vol. 22B, pp. 163-75.

    Article  CAS  Google Scholar 

  11. M. Waladan and M. Nilmani: Can. Metall. Q., 1995, vol. 34, no. 4, pp. 311-18.

    Article  Google Scholar 

  12. E. Jak and P. Hayes: Can. Metall. Q., 2002, vol. 41, no. 2, pp. 163-74.

    CAS  Google Scholar 

  13. R.M. Grant: Aus./Jap. Ext. Metall. Symp, Australasian Institute of Mining and Metallurgy, Sydney, Australia, 1980, pp. 75-93.

    Google Scholar 

  14. E. Jak and P. Hayes: Zinc Proc. Conf, Brisbane, Australia, 2008.

  15. I. Dal and W.J. Rankin: Int. Symp.-World Zinc ‘93, Hobart, Australia, 1993, pp. 417-21.

    Google Scholar 

  16. M. Miyake: Zinc-Lead Smelting at Hachinohe Smelter, Hachinohe, Japan, 1995, pp. 39-50.

    Google Scholar 

  17. D.J. Sofra and A. Heinz: EMC, Hannover, Germany, 2003, pp. 491-506.

    Google Scholar 

  18. S. Hughes, R.W. Matusewicz, M.A. Reuter, and D. Sherrington: EMC, Dusseldorf, Germany, 2007, pp. 1193-1208.

    Google Scholar 

  19. M. Waladan: Lead and Zinc 1995, Sendai, Japan, 1995.

  20. J. Hoang, M.A. Reuter, R. Matusewicz, and S. Hughes: Zinc Proc. Conf. Brisbane, Australia, 2008.

    Google Scholar 

  21. N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R. Matusewicz: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 35-50.

    Article  CAS  Google Scholar 

  22. G.G. Richards: The Howard Worner Int. Symp. on Inj. Pyro. TMS, Melbourne, Australia, 1996, pp. 97-105.

    Google Scholar 

  23. G. Haralampiev and N. Popov: Can. Metall. Q., 1999, vol. 38, no. 1, pp. 1-9.

    Article  CAS  Google Scholar 

  24. K. Chang, G.A. Irons, and Q. Jiao: Can. Metall. Q., 2005, vol. 44, no. 2, pp. 281-8.

    CAS  Google Scholar 

  25. H.H. Kellogg: Trans. TMS-AIME, 1967, vol. 239, pp. 1439-49.

    CAS  Google Scholar 

  26. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: Com. Coup. of Phase Diag. Therm., 2008, vol. 33, pp. 295-311.

    Google Scholar 

  27. B.E. Launder and D.B. Spalding: Com. Meth. App. Mech. Eng., 1974, vol. 3, no. 2, pp. 269-89.

    Article  Google Scholar 

  28. S.V. Patankar and D.B. Spalding: Int. J. Heat. Mass. Trans., 1972, vol. 15, pp. 1787-806.

    Article  Google Scholar 

  29. AVL FIRE CFD Solver Manual, vol. 2008, AVL, Graz, Austria, 2008.

  30. Y. Sato and K. Sekoguchi: Int. J. Multiphase Flow, 1975, vol. 2, no. 1, pp. 79-95.

    Article  Google Scholar 

  31. AVL FIRE CFD Multiphase Manual v 2008, AVL, Graz, Austria, 2008.

  32. J. Chahed, V. Roig, and L. Masbernat: Int. J. Multiphase Flow, 2003, vol. 29, pp. 23-49.

    Article  CAS  Google Scholar 

  33. B.F. Magnussen and B.H. Hjertager: Proc. 16th Symp. (Int.) Combustion, The Combustion Institute, Pittsburgh, PA, 1976, pp. 719-29.

    Google Scholar 

  34. D.B. Spalding: Symp. (Int.) Combustion, 1971, vol. 13, no. 1, pp. 649-57.

    Article  Google Scholar 

  35. D.C. Wilcox: Turbulence Modelling for CFD, DCW Industries, Inc., La Canada Flintridge, CA, 2006.

  36. W.E. Ranz and W.R. Marshall: Chem. Eng. Progr., 1952, vol. 48, no. 3, pp. 173-80.

    CAS  Google Scholar 

  37. F.D. Skinner and L.D. Smoot: Pulverized Coal Combustion and Gasification, L.D. Smoot and D.T. Pratt, eds., Plenum Press, New York, NY, 1979, pp. 149–67.

  38. M. Waladan, G.R. Firkin, J. Bultitude-Paull, B.W. Lightfoot, and J.M. Floyd: Lead-Zinc Conf. ‘90, February 18–21, Anaheim, CA, 1990.

  39. AVL FIRE CFD Species Transport Manual, vol. 2008, AVL, Graz, Austria, 2008.

  40. T.A.A. Quarm: Trans. IMM, 1980, vol. 89, pp. 139-44.

    Google Scholar 

  41. T. Lehner and R. Lindgren: CIM Meeting, Vancouver, Canada, 1985. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=8803420570MD&q=&uid=789670966&setcookie=yes

Download references

Acknowledgments

The authors express their gratitude to the Faculty of Engineering and Industrial Science, Swinburne University of Technology and Outotec Limited, for financial and technical support. The authors also thank Mr. Brian Lightfoot for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmul Huda.

Additional information

Manuscript submitted February 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huda, N., Naser, J., Brooks, G. et al. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace. Metall Mater Trans B 43, 39–55 (2012). https://doi.org/10.1007/s11663-011-9558-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9558-6

Keywords

Navigation