Skip to main content
Log in

Coupled Experimental Study and Thermodynamic Optimization of the K2O-MgO and K2O-MgO-SiO2 Systems

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Key phase diagram experiments were conducted to reveal the phase diagram of the K2O-MgO system using thermal analysis and equilibration techniques with sealed platinum capsules. The peritectic reaction of liquid + MgO → K6MgO4 was determined at 1131 K ± 14 K (858 °C ± 14 °C) for the first time. Based on the critical evaluation of all the literature data and the present experimental results, the thermodynamic optimizations of the K2O-MgO and K2O-MgO-SiO2 systems were performed to obtain a set of model parameters describing the Gibbs energies of all phases in the ternary systems. All reliable phase diagrams and thermodynamic properties of the K2O-MgO and K2O-MgO-SiO2 systems were well reproduced from the optimization. The optimized set of the Gibbs energies of all phases can be used to calculate any unexplored phase diagrams and thermodynamic properties in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ya.R. Krass: Refract. Ind. Ceram., 2001, vol. 42, pp. 417–25.

    Article  Google Scholar 

  2. Ya.R. Krass: Refract. Ind. Ceram., 2002, vol. 43, pp. 374–82.

    Article  Google Scholar 

  3. K. Tsujikawa and M. Ohashi: Opt. Fiber Technol., 2000, vol. 6, pp. 74–82.

    Article  Google Scholar 

  4. K. Tsujikawa, M. Ohashi, and K. Tajima: Electron. Commun. Jpn (Part I: Commun.), 2003, vol. 86, pp. 21–35.

    Article  Google Scholar 

  5. V. Saraswati and K.V.S.R. Anjaneyulu: Bull. Mater. Sci., 1990, vol. 13, pp. 283–91.

    Article  Google Scholar 

  6. L. Song, J. Wu, Z. Li, X. Hao, and Y. Yu: J. Non-cryst. Solids, 2015, vol. 419, pp. 16–26.

    Article  Google Scholar 

  7. X. Ma, H. Ma, and J. Yang: Ind. Eng. Chem. Res., 2016, vol. 55, pp. 10926–31.

    Article  Google Scholar 

  8. A.S. Mangrich, L.C. Tessaro, A. Dos Anjos, F. Wypych, and J.F. Soares: Environ. Geol. (Berl., Ger.), 2001, vol. 40, pp. 1030–36.

    Article  Google Scholar 

  9. E.W. Roedder: Am. J. Sci., 1951, vol. 249, pp. 81–130, 224–48.

  10. J.C. Bardin, M. Avallet, and M. Cassou: C. R. Acad. Sci., Ser. C, 1974, vol. 278, pp. 709–12.

    Google Scholar 

  11. B. Darriet, M. Devalette, F. Roulleau, and M. Avallet: Acta Crystallogr. B, 1974, vol. B30, pp. 2667–69.

    Article  Google Scholar 

  12. R.S. Roth: Adv. Chem. Ser., 1980, vol. 186, pp. 391–408.

    Article  Google Scholar 

  13. F. Seifert and W. Schreyer: Beitr. Mineral. Petrol., 1969, vol. 22, pp. 190–207.

    Article  Google Scholar 

  14. A.M.T. Bell, C.M.B. Henderson, S.A.T. Redfern, R.J. Cernik, P.E. Champness, A.N. Fitch, and S.C. Kohn: Acta Crystallogr. B, 1994, vol. B50, pp. 31–41.

    Article  Google Scholar 

  15. S.A.T. Redfern and C.M.B. Henderson: Am. Mineral., 1996, vol. 81, pp. 369–74.

    Article  Google Scholar 

  16. W.A. Dollase: Phys. Chem. Miner., 1998, vol. 25, pp. 389–92.

    Article  Google Scholar 

  17. E. Yazhenskikh, T. Jantzen, K. Hack, and M. Mueller: CALPHAD Comput. Coupling Phase Diagr. Thermochem., 2014, vol. 47, pp. 35–49.

    Article  Google Scholar 

  18. T.M. Besmann and K.E. Spear: J. Am. Ceram. Soc., 2002, vol. 85, pp. 2887–94.

    Article  Google Scholar 

  19. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende: CALPHAD Comput. Coupling Phase Diagr. Thermochem., 2016, vol. 54, pp. 35–53.

    Article  Google Scholar 

  20. D.G. Kim, M.A. Van Ende, P. Hudon, and I.H. Jung: J. Non-cryst. Solids, 2017. doi:10.1016/j.jnoncrysol.2017.04.029.

    Google Scholar 

  21. I. Barin: Thermochemical Data of Pure Substances, Part 1, VCH, 1989, p. 322. doi:10.1002/9783527619825.

  22. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651–59.

    Article  Google Scholar 

  23. E. Ising: Z. Phys., 1925, vol. 31, pp. 253–58.

    Article  Google Scholar 

  24. A. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1355–60.

    Article  Google Scholar 

  25. A.D. Pelton: CALPHAD Comput. Coupling Phase Diagr. Thermochem., 2001, vol. 25, pp. 319–28.

    Article  Google Scholar 

  26. P. Wu, G. Eriksson, A.D. Pelton, and M. Blander: ISIJ Int., 1993, vol. 33, pp. 26–35.

    Article  Google Scholar 

  27. B.O. Mysen, F. Seifert, and D. Virgo: Am. Mineral., 1980, vol. 65, pp. 867–84.

    Google Scholar 

  28. P. Chartrand and A.D. Pelton: CALPHAD Comput. Coupling Phase Diagr. Thermochem., 1999, vol. 23, pp. 219–30.

    Article  Google Scholar 

  29. E. Moosavi-Khoonsari and I.-H. Jung: J. Eur. Ceram. Soc., 2017, vol. 37, pp. 787–800.

    Article  Google Scholar 

  30. I.E. Grey, B.F. Hoskins, and I.C. Madsen: J. Solid State Chem., 1990, vol. 85, pp. 202–19.

    Article  Google Scholar 

  31. E. Moosavi-Khoonsari and I.-H. Jung: Metall. Mater. Trans. B, 2016, vol. 47, pp. 291–308.

    Article  Google Scholar 

  32. M. Hillert: J. Alloys Compd., 2001, vol. 320, pp. 161–76.

    Article  Google Scholar 

  33. E. Jak, P. Hayes, A.D. Pelton, and S.A. Decterov: Proc. VIII Int’l Conf. on Molten Slags, Fluxes and Salts, Santiago, Chile, 2009, pp. 473–90.

  34. J.F. Schairer: J. Geol., 1950, vol. 58, pp. 512–17.

    Article  Google Scholar 

  35. O.F. Tuttle and J.V. Smith: Am. J. Sci., 1958, vol. 256, pp. 571–89.

    Article  Google Scholar 

  36. A.M. Deml, A.M. Holder, R.P. O’Hayre, C.B. Musgrave, and V. Stevanovic: J. Phys. Chem. Lett., 2015, vol. 6, pp. 1948–53.

    Article  Google Scholar 

  37. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton: JOM, 2013, vol. 65, pp. 1501–09.

    Article  Google Scholar 

  38. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: APL Mater., 2013, vol. 1, pp. 011002/1–011002/11.

    Article  Google Scholar 

  39. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder: Comput. Mater. Sci., 2013, vol. 68, pp. 314–19.

    Article  Google Scholar 

  40. J.S. Lukesh: Am. Mineral., 1942, vol. 27, pp. 143–44.

    Google Scholar 

  41. R.S. Roth, C.L. McDaniel, H.S. Parker, L.P. Cook, T. Negas, and D.B. Minor: Abstr. Geol. Soc. Am., 1977, vol. 9, p. 1149.

    Google Scholar 

  42. J.G. Thompson, R.L. Withers, S.R. Palethorpe, and A. Melnitchenko: J. Solid State Chem., 1998, vol. 141, pp. 29–49.

    Article  Google Scholar 

  43. L.B. Pankratz: U.S. Bur. Mines Rep. Investig., 1968, vol. 7073, pp. 1–8.

    Google Scholar 

  44. S.C. Kohn, C.M.B. Henderson, and R. Dupree: Phys. Chem. Miner., 1994, vol. 21, pp. 176–90.

    Article  Google Scholar 

  45. J.F. Stebbins, I.S.E. Carmichael, and L.K. Moret: Contrib. Mineral. Petrol., 1984, vol. 86, pp. 131–48.

    Article  Google Scholar 

  46. R.P. Beyer, M.J. Ferrante, and R.R. Brown: J. Chem. Thermodyn., 1980, vol. 12, pp. 985–91.

    Article  Google Scholar 

  47. I.-H. Jung, S.A. Decterov, and A.D. Pelton: J. Eur. Ceram. Soc., 2005, vol. 25, pp. 313–33.

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from Tata Steel Europe, POSCO, Nucor Steel, Rio Tinto Iron and Titanium, Hyundai Steel, Nippon Steel, and Sumitomo Metals Corp., JFE Steel, Voestalpine, RHI, and the Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged. Authors (D.-G. Kim and B. Konar) also acknowledge the McGill Engineering Doctorate Award (MEDA) from McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted March 12, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DG., Konar, B. & Jung, IH. Coupled Experimental Study and Thermodynamic Optimization of the K2O-MgO and K2O-MgO-SiO2 Systems. Metall Mater Trans B 48, 2788–2803 (2017). https://doi.org/10.1007/s11663-017-1038-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1038-1

Keywords

Navigation