Skip to main content
Log in

X-ray Radioscopic Visualization of Bubbly Flows Injected Through a Top Submerged Lance into a Liquid Metal

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

We present an experimental study on the formation and behavior of a liquid metal bubbly flow arising from a downward gas injection through a top submerged lance (TSL). A visualization of the bubble dynamics was achieved by the X-ray radiography combined with high-speed imaging. The experiments were carried out in a parallelepiped container (144 × 144 × 12 mm3) using GaInSn, a ternary alloy that is liquid at room temperature. The gas flow rate Qgas was adjusted in a range between 0.033 and 0.1 L/s. Three different injection positions were considered with respect to the submergence depth L. X-ray images allow for a characterization of the flow regimes and provide the properties of the individual bubbles such as size, shape, and trajectory. Formation and entrainment of smaller gas bubbles are observed at the free surface. These small bubbles can be trapped in the fluid for a long time by recirculation vortices. Bubble size distributions are determined for different Qgas. The bubble detachment frequency is measured as a function of Qgas and L. The results are compared with previously published data for water. The X-ray radiography offers an effective method for determining the local void fraction and allows for an estimation of the bubble volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. 1 J.M. Floyd: Metall. Mater. Trans. B, 2005, vol. 36, pp. 557–75.

    Article  CAS  Google Scholar 

  2. 2 B.U.N. Igwe, S. Ramachandran, and J.C. Fulton: Metall. Trans., 1973, vol. 4, pp. 1887–94.

    Article  Google Scholar 

  3. 3 D. Mazumdar and R.I.L. Guthrie: Metall. Trans. B, 1985, vol. 16, pp. 83–90.

    Article  CAS  Google Scholar 

  4. 4 M. Iguchi, T. Uemura, H. Yamaguchi, T. Kuranaga, and Z. Morita: ISIJ Int., 1994, vol. 34, pp. 973–9.

    Article  CAS  Google Scholar 

  5. 5 J. Wang, H. Ooyabu, F. Wang, and M. Iguchi: ISIJ Int., 2011, vol. 51, pp. 1080–5.

    Article  CAS  Google Scholar 

  6. A. Gosset, P. Rambaud, P. Planquart, J.-M. Buchlin, E. Robert, L. Guo, D.D. Joseph, Y. Matsumoto, Y. Sommerfeld, and Y. Wang: Xi’an, 2010, pp. 205–10.

  7. 7 T. Goda, M. Iguchi, Y. Sasaki, and H. Kiuchi: Mater. Trans., 2005, vol. 46, pp. 2461–6.

    Article  CAS  Google Scholar 

  8. 8 Y.S. Morsi, W. Yang, B.R. Clayton, and N.B. Gray: Can. Metall. Q., 2000, vol. 39, pp. 87–98.

    Article  CAS  Google Scholar 

  9. 9 C.B. Solnordal, F.R.A. Jorgensen, and R.N. Taylor: Metall. Mater. Trans. B, 1998, vol. 29, pp. 485–492.

    Article  CAS  Google Scholar 

  10. 10 Y. Pan and D. Langberg: J. Comput. Multiph. Flows, 2010, vol. 2, pp. 151–64.

    Article  CAS  Google Scholar 

  11. 11 P. Liovic, M. Rudman, and J.-L. Liow: Appl. Math. Model., 2002, vol. 26, pp. 113–40.

    Article  Google Scholar 

  12. 12 P. Liovic, J.-L. Liow, and M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225–33.

    Article  CAS  Google Scholar 

  13. 13 N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R.W. Matusewicz: Metall. Mater. Trans. B, 2010, vol. 41, pp. 35–50.

    Article  CAS  Google Scholar 

  14. 14 N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R.W. Matusewicz: Metall. Mater. Trans. B, 2012, vol. 43, pp. 39–55.

    Article  Google Scholar 

  15. 15 S. Torres and M.A. Barron: Open J. Appl. Sci., 2016, vol. 06, pp. 860–7.

    Article  Google Scholar 

  16. D. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer (2019) Metall. Mater. Trans. B, 5: 2. DOI: 10.1007/s11663-019-01630-z

    Article  Google Scholar 

  17. 17 O. Keplinger, N. Shevchenko, and S. Eckert: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 228, pp. 012009-1–012009-9.

    Article  Google Scholar 

  18. 18 O. Keplinger, N. Shevchenko, and S. Eckert: Int. J. Multiph. Flow, 2018, vol. 105, pp. 159–69.

    Article  CAS  Google Scholar 

  19. 19 T. Vogt, S. Boden, A. Andruszkiewicz, K. Eckert, S. Eckert, and G. Gerbeth: Nucl. Eng. Des., 2015, vol. 294, pp. 16–23.

    Article  CAS  Google Scholar 

  20. 20 G.N. Oryall and J.K. Brimacombe: Metall. Trans. B, 1976, vol. 7, pp. 391–403.

    Article  Google Scholar 

  21. 21 K.G. Davis, G.A. Irons, and R.I.L. Guthrie: Metall. Trans. B, 1978, vol. 9, pp. 721–2.

    Article  Google Scholar 

  22. 22 Mukai K., Nakamura T., and Terashima H.: Tetsu–Hagane, 1992, vol. 78, pp. 1682–9.

    Article  CAS  Google Scholar 

  23. 23 P.K. Iwamasa and R.J. Fruehan: ISIJ Int., 1996, vol. 36, pp. 1319–27.

    Article  CAS  Google Scholar 

  24. 24 M.C. Baker and R. Bonazza: Exp. Fluids, 1998, vol. 25, pp. 61–8.

    Article  CAS  Google Scholar 

  25. 25 V.F. Chevrier and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 537–40.

    Article  CAS  Google Scholar 

  26. 26 Z. Han and L. Holappa: ISIJ Int., 2003, vol. 43, pp. 292–7.

    Article  CAS  Google Scholar 

  27. 27 Z. Han and L. Holappa: Metall. Mater. Trans. B, 2003, vol. 34, pp. 525–32.

    Article  CAS  Google Scholar 

  28. 28 S.V. Gnyloskurenko and T. Nakamura: Mater. Trans., 2003, vol. 44, pp. 2298–302.

    Article  CAS  Google Scholar 

  29. 29 Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic: J. Chem. Eng. Data, 2014, vol. 59, pp. 757–63.

    Article  CAS  Google Scholar 

  30. 30 K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2015, vol. 46, pp. 700–710.

    Article  Google Scholar 

  31. C. Tomasi and R. Manduchi: in Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Narosa Publishing House, Bombay, India, 1998, pp. 839–46.

  32. 32 D. Bradley and G. Roth: J. Graph. Tools, 2007, vol. 12, pp. 13–21.

    Article  Google Scholar 

  33. 33 J. Serra: Signal Process. 1994, vol. 38, pp. 3–11.

    Article  Google Scholar 

  34. 34 E. Delnoij, J. Westerweel, N.G. Deen, J.A.M. Kuipers, and W.P.M. van Swaaij: Chem. Eng. Sci., 1999, vol. 54, pp. 5159–71.

    Article  CAS  Google Scholar 

  35. 35 T. Sanada, M. Watanabe, T. Fukano, and A. Kariyasaki: Chem. Eng. Sci., 2005, vol. 60, pp. 4886–900.

    Article  CAS  Google Scholar 

  36. 36 L. Liu, O. Keplinger, T. Ma, T. Ziegenhein, N. Shevchenko, S. Eckert, H. Yan, and D. Lucas: Chem. Eng. Sci., 2018, vol. 192, pp. 288–305.

    Article  CAS  Google Scholar 

  37. 37 L. Liu, O. Keplinger, T. Ziegenhein, N. Shevchenko, S. Eckert, H. Yan, and D. Lucas: Int. J. Multiph. Flow, 2019, vol. 110, pp. 218–37.

    Article  CAS  Google Scholar 

  38. 38 M.P. Schwartz: Chem. Eng. Sci., 1990, vol. 45, pp. 1765–77.

    Article  Google Scholar 

  39. 39 I. Leibson, E.G. Holcomb, A.G. Cacoso, and J.J. Jacmic: AIChE J., 1956, vol. 2, pp. 300–6.

    Article  Google Scholar 

  40. 40 B. Krull, E. Strumpf, O. Keplinger, N. Shevchenko, J. Fröhlich, S. Eckert, and G. Gerbeth: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 228, pp. 012006-1–012006-16.

    Article  Google Scholar 

  41. 41 N. Shevchenko, S. Boden, S. Eckert, D. Borin, M. Heinze, and S. Odenbach: Eur. Phys. J. Spec. Top., 2013, vol. 220, pp. 63–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumi Akashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 15, 2019.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akashi, M., Keplinger, O., Shevchenko, N. et al. X-ray Radioscopic Visualization of Bubbly Flows Injected Through a Top Submerged Lance into a Liquid Metal. Metall Mater Trans B 51, 124–139 (2020). https://doi.org/10.1007/s11663-019-01720-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01720-y

Navigation