Skip to main content
Log in

Investigation of the Wetting Behavior of Formulated SMAW Electrode Coating Fluxes With Regression and ANN Model

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The SMAW electrode coating fluxes are formulated for the pipeline steels. The contact angle, spread area, work of adhesion, and floatation coefficient at 1573 K are investigated for the \(\text{CaF}_{2}\text{-CaO-Al}_{2}\text{O}_{3}\text{-BaO-SiO}_{2}\text{-TiO}_{2}\) fluxes. The 27 flux compositions are generated by extreme vertices design approach. The surface tension and corrected optical basicity of the fluxes are calculated. The regression analysis is used to estimate the effect of individuals and the interaction of constituents. The ANN models are prepared and compared with regression analysis for prediction accuracy. The phases present in the fluxes are characterized by the XRD and FTIR analysis. The structural analysis of the melt is performed by analyzing the powder of quenched slag. The structural analysis of the as-quenched slag is done by XRD, and FTIR which indicates the network formation of \({{[\text{AlO}}_{4}]}^{5-}\) tetrahedral and \({{[\text{SiO}}_{4}]}^{4-}\) tetrahedral unit. The UV–Vis analysis of the as-quenched slag shows the redshift with lower corrected optical basicity. The corrected optical basicity is a global measure of oxygen species in the melt. The \(\text{CaO and BaO}\) act as network breaker and releases non-bridging oxygen \({\text{O}}^{-}\) at the expense of bridging oxygen \({\text{O}}^{0}\). The contact angle decreases with the increase of \(\text{CaO and BaO}\). The increase in individual constituents \({\text{Al}}_{2}{\text{O}}_{3}\) and \({\text{CaF}}_{2}\) increases the contact angle. The \({\text{Al}}_{2}{\text{O}}_{3}\) acts as network former in the melts. The \({\text{CaF}}_{2}\) present in the melt as \({\text{Ca}}^{2+}\) and \({\text{F}}^{-}\) due to higher \({\text{CaF}}_{2}\) concentration \((\sim \) 35 pct) which has positively affected the contact angle. The increase of individual constituents such as \(\text{CaO and BaO}\) has an increasing effect on the work of adhesion and decreasing effect on the floatation coefficient. The increase of \({\text{Al}}_{2}{\text{O}}_{3}\) and \({\text{CaF}}_{2}\) has a decreasing effect on the work of adhesion and an increasing effect on the floatation coefficient. The \({\text{Al}}_{2}{\text{O}}_{3}\) is generally considered as network former, which influences the wetting properties. The binary interaction of \(\text{CaO}\)·\(\text{BaO, and {CaF}}_{2}\)·\(\text{CaO}\) has a decreasing effect on the contact angle, and floatation coefficient, and an increasing effect on the work of adhesion. The binary interaction of the \({\text{CaF}}_{2}\cdot \text{CaO, CaF}_{2} \cdot {\text{Al}_{2}\text{O}_{3}, {\text{CaF}}_{2} \cdot \text{BaO, and CaO}} \cdot {{\text{Al}}_{2}\text{O}}_{3}\) has a decreasing effect on the spread area, whereas the ternary interaction of \({\text{CaF}}_{2} \cdot \text{CaO} \cdot {{\text{Al}}_{2}\text{O}}_{3}, \text{and}\) \({\text{CaF}}_{2} \cdot \text{CaO} \cdot \text{BaO}\) has an increasing effect on the spread area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Energy Agency International: World Energy Outlook, 2021.

  2. A.K. Das: Mater. Manuf. Processes, 2010, vol. 25, pp. 14–19.

    Article  CAS  Google Scholar 

  3. Annual report 2018–19: Energizing and Empowering India, 2018.

  4. M. Witek: J. Nat. Gas Sci. Eng., 2015, vol. 27, pp. 374–84.

    Article  CAS  Google Scholar 

  5. H. Hillenbrand and C. Kalwa: World Pipelines, 2002, vol. 2, pp. 57–61.

    Google Scholar 

  6. S.K. Sharma and S. Maheshwari: J. Nat. Gas Sci. Eng., 2017, vol. 38, pp. 203–17.

    Article  CAS  Google Scholar 

  7. S. Felber: Weld. World., 2008, vol. 52, pp. 19–41.

    Article  CAS  Google Scholar 

  8. S.Y. Shin, K. Oh, K.B. Kang, and S. Lee: ISIJ Int., 2009, vol. 49, pp. 1191–99.

    Article  CAS  Google Scholar 

  9. D.I. Pantelis and T.E. Tsiourva: Trends in oil and gas corrosion research and technologies: production and transmission, Elsevier Inc., Amsterdam, 2017, pp. 249–70.

    Book  Google Scholar 

  10. R. Pourazizi, M.A. Mohtadi-Bonab, and J.A. Szpunar: Mater. Charact., 2020, vol. 164, p. 110330.

    Article  CAS  Google Scholar 

  11. A. Talebi Hanzaei, S.P.H. Marashi, and E. Ranjbarnodeh: Int. J. Hydrog. Energy, 2018, vol. 43, pp. 9399–407.

    Article  CAS  Google Scholar 

  12. C. Liu and S.D. Bhole: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 169–81.

    Article  CAS  Google Scholar 

  13. R. Pouriamanesh, K. Dehghani, R. Vallant, and N. Enzinger: J. Mater. Eng. Perform., 2018, vol. 27, pp. 6058–68.

    Article  CAS  Google Scholar 

  14. S.S. Babu: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 267–78.

    Article  CAS  Google Scholar 

  15. H. Alipooramirabad, A. Paradowska, R. Ghomashchi, and M. Reid: J. Manuf. Process., 2017, vol. 28, pp. 70–81.

    Article  Google Scholar 

  16. U. Mitra and T.W. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 65–71.

    Article  Google Scholar 

  17. S. Liu and D.L. Olson: Weld. J., 1986, vol. 65, pp. 139s-s149.

    Google Scholar 

  18. M. Matsushita and S. Liu: Weld. J., 1993, vol. 79, pp. 295s–303s.

    Google Scholar 

  19. J. du Plessis, M. du Toit, and P. Pistorius: Weld. J., 2007, vol. 86, pp. 273–80.

    Google Scholar 

  20. H. Wang, R. Qin, and G. He: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4530–42.

    Article  CAS  Google Scholar 

  21. S. Chung and I. Sohn: Int. J. Hydrog. Energy, 2014, vol. 39, pp. 18490–7.

    Article  CAS  Google Scholar 

  22. C.M. Chang, S.H. Wu, C. Fan, M.C. Chen, and W. Wu: Mater. Chem. Phys., 2008, vol. 112, pp. 783–8.

    Article  CAS  Google Scholar 

  23. K.C. Mills and B.J. Keene: Int. Met. Rev., 1981, vol. 26, pp. 21–69.

    Article  CAS  Google Scholar 

  24. J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn: J. Non Cryst. Solids, 2016, vol. 432, pp. 218–26.

    Article  CAS  Google Scholar 

  25. R. Zhang, Y. Meng, Z. Wang, S. Jiao, J. Jia, Y. Min, and C. Liu: Metall. Mater. Trans. B, 2022, vol. 53, pp. 571–83.

    Article  CAS  Google Scholar 

  26. L. Sharma, J. Kumar, and R. Chhibber: Ceram. Int., 2020, vol. 46, pp. 8111–21.

    Article  CAS  Google Scholar 

  27. L. Sharma, J. Kumar, and R. Chhibber: Ceram. Int., 2020, vol. 46, pp. 5649–57.

    Article  CAS  Google Scholar 

  28. W. Lin Wang, E. Zhuo Gao, L. Jun Zhou, L. Zhang, and H. Li: J. Iron Steel Res. Int., 2019, vol. 26, pp. 355–64.

    Article  Google Scholar 

  29. R. Joshi and R. Chhibber: Renew. Energy, 2018, vol. 119, pp. 282–9.

    Article  CAS  Google Scholar 

  30. W.N. Khan, J. Kumar, and R. Chhibber: Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl., 2020, vol. 234, pp. 622–36.

    Article  CAS  Google Scholar 

  31. K.C. Mills: ISIJ Int., 1993, vol. 33, pp. 148–55.

    Article  CAS  Google Scholar 

  32. J.B. Kim, T.H. Lee, and I. Sohn: Metall. Mater. Trans. A, 2018, vol. 49, pp. 2705–20.

    Article  CAS  Google Scholar 

  33. H. Tian, Z. Wang, T. Zhao, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53, pp. 232–41.

    Article  CAS  Google Scholar 

  34. Z. Wang and I. Sohn: J. Am. Ceram. Soc., 2018, vol. 101, pp. 4285–96.

    Article  CAS  Google Scholar 

  35. J.S. Choi, Y. Park, S. Lee, and D.J. Min: J. Am. Ceram. Soc., 2018, vol. 101, pp. 2856–67.

    Article  CAS  Google Scholar 

  36. Z. Wang, J. Zhang, M. Zhong, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53, pp. 1364–70.

    Article  CAS  Google Scholar 

  37. V. Kumar and R. Chhibber: Ceram. Int., 2022, vol. 48, pp. 17412–24.

    Article  CAS  Google Scholar 

  38. S. Mahajan and R. Chhibber: Ceram. Int., 2019, vol. 45, pp. 24154–67.

    Article  Google Scholar 

  39. W.N. Khan and R. Chhibber: Ceram. Int., 2020, vol. 46, pp. 8601–14.

    Article  CAS  Google Scholar 

  40. L. Peng, Z. Jiang, and X. Geng: Metals, 2019, vol. 9, p. 1300.

    Article  CAS  Google Scholar 

  41. S. Mahajan, J. Kumar, and R. Chhibber: Silicon, 2020, vol. 12, pp. 2741–53.

    Article  CAS  Google Scholar 

  42. V. Kumar, J. Kumar, R. Chhibber, and L. Sharma: Silicon, 2022, pp. 1–3.

  43. R.A. McLean and V.L. Anderson: Technometrics, 1966, vol. 8, pp. 447–54.

    Article  Google Scholar 

  44. R.E. Boni and G. Derge: J. Met., 1956, vol. 8, pp. 53–9.

    CAS  Google Scholar 

  45. K. Nakashima and K. Mori: ISIJ Int., 1992, vol. 32, pp. 11–8.

    Article  CAS  Google Scholar 

  46. K.C. Mills, L. Yuan, Z. Li, G.H. Zhang, and K.C. Chou: High. Temp. Mater. Process., 2012, vol. 31, pp. 301–21.

    Article  CAS  Google Scholar 

  47. J.A. Duffy and M.D. Ingram: J. Non Cryst. Solids, 1976, vol. 21, pp. 373–410.

    Article  CAS  Google Scholar 

  48. K.C. Mills and S. Sridhar: Ironmak. Steelmak., 1999, vol. 26, pp. 262–8.

    Article  CAS  Google Scholar 

  49. S. Hara and K. Ogino: ISIJ Int., 1989, vol. 29, pp. 477–85.

    Article  CAS  Google Scholar 

  50. Y. Liu, X. Lv, C. Bai, and B. Yu: ISIJ Int., 2014, vol. 54, pp. 2154–61.

    Article  CAS  Google Scholar 

  51. K.C. Mills and Y.C. Su: Int. Mater. Rev., 2006, vol. 51, pp. 329–51.

    Article  CAS  Google Scholar 

  52. Y. Chen, A. Furmann, M. Mastalerz, and A. Schimmelmann: Fuel, 2014, vol. 116, pp. 538–49.

    Article  CAS  Google Scholar 

  53. Z. Wang, X.T. Zu, X. Xiang, J. Lian, and L. Wang: J. Mater. Sci., 2006, vol. 41, pp. 1973–8.

    CAS  Google Scholar 

  54. Y. Zhang, T. Coetsee, H. Yang, T. Zhao, and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1947–52.

    Article  CAS  Google Scholar 

  55. J.S. Choi, T.J. Park, and D.J. Min: J. Am. Ceram. Soc., 2021, vol. 104, pp. 140–56.

    Article  CAS  Google Scholar 

  56. J.H. Park, D.J. Min, and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 38–43.

    Article  CAS  Google Scholar 

  57. Y. Li, B. Yu, B. Wang, T.H. Lee, and M. Banu: Mater. Des., 2020, vol. 194, p. 108912.

    Article  CAS  Google Scholar 

  58. Z. Tian: J. Intell. Manuf., 2012, vol. 23, pp. 227–37.

    Article  Google Scholar 

  59. J. Freiesleben, J. Keim, and M. Grutsch: Qual. Reliab. Eng. Int., 2020, vol. 36, pp. 1837–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Chhibber, R. Investigation of the Wetting Behavior of Formulated SMAW Electrode Coating Fluxes With Regression and ANN Model. Metall Mater Trans B 54, 287–302 (2023). https://doi.org/10.1007/s11663-022-02689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02689-x

Navigation