Skip to main content
Log in

Ag/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural and electrical characteristics of Ag/Ni bilayer metallization on polycrystalline thermoelectric SnSe were investigated. Two difficulties with thermoelectric SnSe metallization were identified for Ag and Ni single layers: Sn diffusion into the Ag metallization layer and unexpected cracks in the Ni metallization layer. The proposed Ag/Ni bilayer was prepared by hot-pressing, demonstrating successful metallization on the SnSe surface without interfacial cracks or elemental penetration into the metallization layer. Structural analysis revealed that the Ni layer reacts with SnSe, forming several crystalline phases during metallization that are beneficial for reducing contact resistance. Detailed investigation of the Ni/SnSe interface layer confirms columnar Ni-Sn intermetallic phases [(Ni3Sn and Ni3Sn2) and Ni5.63SnSe2] that suppress Sn diffusion into the Ag layer. Electrical specific-contact resistivity (5.32 × 10−4 Ω cm2) of the Ag/Ni bilayer requires further modification for development of high-efficiency polycrystalline SnSe thermoelectric modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  2. X. Niu, J. Yu, and S. Wang, J. Power Sources 188, 621 (2009).

    Article  Google Scholar 

  3. C. Lertsatitthanakorn, Bioresour. Technol. 98, 1670 (2007).

    Article  Google Scholar 

  4. X.F. Zheng, Y.Y. Yan, and K. Simpson, Appl. Therm. Eng. 53, 305 (2013).

    Article  Google Scholar 

  5. C. Hadjistassou, E. Kyriakides, and J. Georgiou, Energy Convers. Manag. 66, 165 (2013).

    Article  Google Scholar 

  6. A. Muto, J. Yang, B. Poudel, Z. Ren, and G. Chen, Adv. Energy Mater. 3, 245 (2013).

    Article  Google Scholar 

  7. M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).

    Article  Google Scholar 

  8. G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, and P. Rogl, Acta Mater. 95, 201 (2015).

    Article  Google Scholar 

  9. X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M.G. Kanatzidis, and A. Yamamoto, Energy Environ. Sci. 9, 517 (2016).

    Article  Google Scholar 

  10. J. Zhao, Z. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, and J.S. Tse, J. Mater. Chem. A 3, 19774 (2015).

    Article  Google Scholar 

  11. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  12. R. Bjørk, J. Electron. Mater. 44, 2869 (2015).

    Article  Google Scholar 

  13. Y. Kim, G. Yoon, and S.H. Park, Exp. Mech. 56, 861 (2016).

    Article  Google Scholar 

  14. C.C. Li, F. Drymiotis, L.L. Liao, H.T. Hung, J.H. Ke, C.K. Liu, C.R. Kao, and G.J. Snyder, J. Mater. Chem. C 3, 10590 (2015).

    Article  Google Scholar 

  15. C.C. Li, F. Drymiotis, L.L. Liao, M.J. Dai, C.K. Liu, C.L. Chen, Y.Y. Chen, C.R. Kao, and G.J. Snyder, Energy Convers. Manag. 98, 134 (2015).

    Article  Google Scholar 

  16. F.R. Sie, C.S. Hwang, Y.H. Tang, C.H. Kuo, Y.W. Chou, C.H. Yeh, H.Y. Ho, Y.L. Lin, and C.H. Lan, J. Electron. Mater. 44, 1450 (2015).

    Article  Google Scholar 

  17. K.T. Wojciechowski, R. Zybala, and R. Mania, Microelectron. Reliab. 51, 1198 (2011).

    Article  Google Scholar 

  18. V. Semenyuk and O. Antonenko, in Proceedings of the 5th European Conference on Thermoelectrics (2007).

  19. H.H. Hsu, C.H. Cheng, S.H. Chiou, C.H. Huang, C.M. Liu, Y.L. Lin, W.H. Chao, P.H. Yang, C.Y. Chang, and C.P. Cheng, J. Alloys Compd. 588, 633 (2014).

    Article  Google Scholar 

  20. C.L. Yang, H.J. Lai, J.D. Hwang, and T.H. Chuang, J. Electron. Mater. 42, 359 (2013).

    Article  Google Scholar 

  21. L. Shi, X. Huang, M. Gu, and L. Chen, Surf. Coat. Technol. 285, 312 (2016).

    Article  Google Scholar 

  22. D. Zhao, H. Geng, and X. Teng, J. Alloys Compd. 517, 198 (2012).

    Article  Google Scholar 

  23. J.R. Sarvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. Konig, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, J. Electron. Mater. 42, 7 (2013).

    Google Scholar 

  24. J. Graff, J. He, and T.M. Tritt, Inorganics 2, 168 (2014).

    Article  Google Scholar 

  25. C. Fu, T. Zhu, Y. Liu, H. Xie, and X. Zhao, Energy Environ. Sci. 8, 216 (2015).

    Article  Google Scholar 

  26. J. Rodríguez-Carvajal, Commission on powder diffraction (IUCr). Newsletter 26, 12 (2001).

    Google Scholar 

  27. A. Onda, T. Komatsu, and T. Yashima, Phys. Chem. Chem. Phys. 2, 2999 (2000).

    Article  Google Scholar 

  28. S. Badrinarayanan, A.B. Mandale, V.G. Gunjikar, and A.P.B. Sinha, J. Mater. Sci. 21, 3333 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Chung or Chung-Yul Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.H., Jin, Y., Ahn, K. et al. Ag/Ni Metallization Bilayer: A Functional Layer for Highly Efficient Polycrystalline SnSe Thermoelectric Modules. J. Electron. Mater. 46, 848–855 (2017). https://doi.org/10.1007/s11664-016-4972-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4972-9

Keywords

Navigation