Skip to main content

Advertisement

Log in

Diamond and Carbon Nanotube Composites for Supercapacitor Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g−1 (∼1 F cm−2) and gravimetric specific energy and power as high as 0.7 W h kg−1 and 176.4 W kg−1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, and S. Yang, Nano Energy 11, 568 (2015).

    Article  Google Scholar 

  2. D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.M. Cheng, Angew. Chem. Int. Ed. 48, 1525 (2009).

    Article  Google Scholar 

  3. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Science 313, 1760 (2006).

    Article  Google Scholar 

  4. C. Hebert, E. Scorsone, M. Mermoux, and P. Bergonzo, Carbon 90, 102 (2015).

    Article  Google Scholar 

  5. B.C. Lourencao, T.A. Silva, H. Zanin, P.W. May, E.J. Corat, O. Fatibello-Filho, J. Solid State Electrochem 20, 2403 (2016).

  6. H. Zanin, P.W. May, D.J. Fermin, D. Plana, S.M.C. Vieira, W.I. Milne, E.J. Corat, and A.C.S. Appl, Mater. Interfaces 6, 990 (2014).

    Article  Google Scholar 

  7. C. Hebert, J.P. Mazellier, E. Scorsone, M. Mermoux, and P. Bergonzo, Carbon 71, 27 (2014).

    Article  Google Scholar 

  8. J.-H. Kim, K. Zhu, Y. Yan, C.L. Perkins, and A.J. Frank, Nano Lett. 10, 4099 (2010).

    Article  Google Scholar 

  9. F. Gao, C.E. Nebel, ACS Appl Mater. Interfaces (2015). doi:10.1021/acsami.5b07027.

  10. H. Zanin, P.W. May, R.L. Harniman, T. Risbridger, E.J. Corat, and D.J. Fermin, Carbon 82, 288 (2015).

    Article  Google Scholar 

  11. T.A. Silva, H. Zanin, P.W. May, E.J. Corat, and O. Fatibello-Filho, ACS Appl. Mater. Interfaces 6, 21086 (2014).

    Article  Google Scholar 

  12. H. Zanin, C.M.R. Rosa, N. Eliaz, P.W. May, F.R. Marciano, and A.O. Lobo, Nanoscale 7, 10218 (2015).

    Article  Google Scholar 

  13. M.M. Zogbi, E. Saito, H. Zanin, F.R. Marciano, and A.O. Lobo, Mater. Lett. 132, 70 (2014).

    Article  Google Scholar 

  14. H. Zanin, P.W. May, M.H.M.O. Hamanaka, E.J. Corat, and A.C.S. Appl, Mater. Interfaces 5, 12238 (2013).

    Article  Google Scholar 

  15. H. Zanin, P.W. May, A.O. Lobo, E. Saito, J.P.B. Machado, G. Martins, V.J. Trava-Airoldi, and E.J. Corat, J. Electrochem. Soc. 161, H1 (2014).

    Article  Google Scholar 

  16. Y. Li, K. Sheng, W. Yuan, and G. Shi, Chem. Commun. 49, 291 (2013).

    Article  Google Scholar 

  17. V. Carozo, C.M. Almeida, E.H.M. Ferreira, L.G. Cancado, C.A. Achete, and A. Jorio, Nano Lett. 11, 4527 (2011).

    Article  Google Scholar 

  18. J.V.S. Moreira, E.J. Corat, P.W. May, L.D.R. Cardoso, P.A. Lelis, H. Zanin, J. Electron. Mater. 45, 5781 (2016).

  19. D. Pradhan, Y.C. Lee, C.W. Pao, W.F. Pong, and I.N. Lin, Diam. Rel. Mater. 15, 2001 (2006).

    Article  Google Scholar 

  20. James, Sigma Bonds Come in Six Varieties: Pi Bonds Come in One (2010), http://www.masterorganicchemistry.com/ 2010/10/13/sigma-bonds-come-in-six-varieties-pi-bonds-come-inone/. Accessed 13 Oct 2016.

  21. D. Srivastava, M. Menon, and K.J. Cho, Phys. Rev. Lett. 83, 2973 (1999).

    Article  Google Scholar 

  22. W.H. Chen, Y.J. He, and H.Z. Wang, Opt. Express 14, 11271 (2006).

    Article  Google Scholar 

  23. H.Y. Choi and E.J. Mele, Phys. Rev. B 34, 8750 (1986).

    Article  Google Scholar 

  24. L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the LME/LNLS-Campinas and the University of Bristol for microscope facilities and NANOBIO for the Autolab facility. Also, we gratefully acknowledge the Brazilian Agency Fapesp (2014/02163-7) and the Royal Society for Newton Travel Fund NI140181 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudson Zanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, J.V.S., May, P.W., Corat, E.J. et al. Diamond and Carbon Nanotube Composites for Supercapacitor Devices. J. Electron. Mater. 46, 929–935 (2017). https://doi.org/10.1007/s11664-016-5010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5010-7

Keywords

Navigation