Skip to main content
Log in

Effect of Deposition Rate and Annealing on Physical Properties of In2O3 Thin Films Prepared by Spray Pyrolysis: Ultraviolet (UV) Photoconductivity Response

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As-grown and annealed indium oxide thin films deposited by spray pyrolysis at various rates (2 mL/min, 3.5 mL/min, and 5 mL/min) on glass substrate have been studied. Field-emission scanning electron microscopy images and x-ray diffraction analysis of the samples revealed that the deposition spray rate and annealing process affected both the surface morphology and preferred orientation of the polycrystalline cubic phase of the layers. Electrical investigations confirmed presence of oxygen vacancy (V O) defects related to band tail, having minimum width in the sample deposited at the highest spray rate (5 mL/min). Ultraviolet photoconductivity results indicated that, although this sample had the highest light sensitivity, its sensitivity decreased after annealing due to increased V O defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Walsh, J.L.D. Silva, S.-H. Wei, C. Krber, L.F. Piper, A. De Masi, K.E. Smith, G. Panaccione, P. Torelli, D.J. Payne, A. Bourlange, and R.G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).

    Article  Google Scholar 

  2. P.D.C. King, T.D. Veal, F. Fuchs, Ch.Y. Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, and C.F. McConville, Phys. Rev. B 79, 205211 (2009).

    Article  Google Scholar 

  3. S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar, and I. Asshari, Sci. World J. 2015, 1–10 (2015).

    Article  Google Scholar 

  4. S. Kannan, L. Rieth, and F. Solzbacher, Sens. Actuators B 149, 8 (2010).

    Article  Google Scholar 

  5. X. Wang, M. Zhang, J. Liu, T. Luo, and Y. Qian, Sens. Actuators B 137, 103 (2009).

    Article  Google Scholar 

  6. G. Korotcenkov, V. Brinzari, A. Ceraneavschi, M. Iavanov, V. Goalovanov, A. Cornet, J. Morante, A. Cabot, and J. Acrbiol, Thin Solid Films 460, 315 (2004).

    Article  Google Scholar 

  7. K.L. Chopra and S.R. Das, Thin Film Solar Cells (New York: Plenum, 1983).

    Book  Google Scholar 

  8. J.F. Smith, A.J. Aronson, D. Chen, and W.H. Class, Thin Solid Films 72, 469 (1980).

    Article  Google Scholar 

  9. S. Lee, J.H. Noh, S.-T. Bae, I.-S. Cho, J.Y. Kim, H. Shin, J.-K. Lee, H.S. Jung, and K.S. Hong, J. Phys. Chem. C 113, 7443 (2009).

    Article  Google Scholar 

  10. L. Petti, H. Faber, N. Münzenrieder, G. Cantarella, P.A. Patsalas, G. Tröster, and T.D. Anthopoulos, J. Appl. Phys. Lett. 106, 092105 (2015).

    Article  Google Scholar 

  11. M.A. Flores-Mendoza, R. Castanedo-Perez, G. Torres-Delgado, J. Márquez Marín, and O. Zelaya-Angel, Thin Solid Films 517, 681 (2008).

    Article  Google Scholar 

  12. T.S. Ko, C.P. Chu, J.R. Chen, Y.A. Chang, T.C. Lu, H.C. Kuo, and S.C. Wang, J. Vac. Sci. Technol. A 25, 1038 (2007).

    Article  Google Scholar 

  13. S. Kaleemulla, N.M. Rao, N.S. Krishna, M. Kuppan, M.R. Begam, and M. Shobana, J. Nano Electron. Phys. 5, 04048 (2013).

    Google Scholar 

  14. R.A. Sailer, A. Wanger, C. Schmit, N. Klaverkamp, and D.L. Schulz, Surf. Coat. Technol. 203, 835 (2008).

    Article  Google Scholar 

  15. N.H. Kim, J.H. Myung, H.W. Kim, and C. Lee, Phys. Status Solidi 202, 108 (2005).

    Article  Google Scholar 

  16. K.R. Murali, V. Sambasivam, M. Jayachandran, M.J. Chockalingam, N. Rangarajan, and V.K. Venkatesan, Surf. Coat. Technol. 35, 207 (1988).

    Article  Google Scholar 

  17. B. Radhakrishna, T.K. Subramanyam, B.S. Naidu, and S. Uthanna, Opt. Mater. 15, 217 (2000).

    Article  Google Scholar 

  18. A. Subrahmanyam and U.K. Barik, J. Phys. Chem. Solids 67, 1518 (2006).

    Article  Google Scholar 

  19. W.Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D.D. Lee, and N. Yamazoe, Sens. Actuators B 65, 312 (2000).

    Article  Google Scholar 

  20. M.A. Majeed Khan, W. Khan, M. Ahamed, and M. Alhoshan, Mater. Lett. 79, 119 (2012).

    Article  Google Scholar 

  21. N. Tripathi, S. Rath, V. Ganesan, and R.J. Choudhary, Appl. Surf. Sci. 256, 7091 (2010).

    Article  Google Scholar 

  22. V. Senthilkumar and P. Vickraman, Curr. Appl. Phys. 10, 880 (2010).

    Article  Google Scholar 

  23. T. Asikainen, M. Ritala, W.M. Li, R. Lappalainen, and M. Leskelä, Appl. Surf. Sci. 112, 231 (1997).

    Article  Google Scholar 

  24. V. Golovanov, M.A. Mäki-Jaskari, T.T. Rantala, G. Korotcenkov, V. Brinzari, A. Cornet, and J. Morante, Sens. Actuators B 106, 563 (2005).

    Article  Google Scholar 

  25. I.J. Panneerdoss, S.J. Jeyakumar, S. Ramalingam, and M. Jothibas, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 147, 1 (2015).

    Article  Google Scholar 

  26. G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, and J. Morante, Thin Solid Films 479, 38 (2005).

    Article  Google Scholar 

  27. M. Hellwig, H. Parala, J. Cybinksa, D. Barreca, A. Gasparotto, B. Niermann, H.-W. Becker, D. Rogalla, J. Feydt, S. Irsen, A.V. Mudring, J. Winter, R.-A. Fischer, and A. Devi, J. Nanosci. Nanotechnol. 11, 8094 (2011).

    Article  Google Scholar 

  28. F. Yang, J. Ma, X. Feng, and L. Kong, J. Cryst. Growth 310, 4054 (2008).

    Article  Google Scholar 

  29. P. Kościelniak, M. Sitarz, E. Maciak, and J. Szuber, Appl. Surf. Sci. 258, 8419 (2012).

    Article  Google Scholar 

  30. W. Seiler, M. Nistor, C. Hebert, and J. Perrière, Sol. Energy Mater. Sol. Cells 116, 34 (2013).

    Article  Google Scholar 

  31. A. Bouhdjer, A. Attaf, H. Saidi, H. Bendjedidi, Y. Benkhetta, and I. Bouhaf, J. Semicond. 36, 082002 (2015).

    Article  Google Scholar 

  32. M. Anwar, I.M. Ghauri, and S.A. Siddiqi, Condens. Matter. 50, 763 (2005).

    Google Scholar 

  33. J.H.W. de Wit, J. Solid State Chem. 38, 819 (1977).

    Article  Google Scholar 

  34. P. Agoston, P. Erhart, A. Klein, and K. Albe, J. Phys.: Condens. Matter 21, 455801 (2009).

    Google Scholar 

  35. R. Ghosh, G.K. Paul, and D. Basak, Mater. Res. Bull. 40, 1905 (2005).

    Article  Google Scholar 

  36. S. Mridha and D. Basak, Chem. Phys. Lett. 427, 62 (2006).

    Article  Google Scholar 

  37. S. Mridha and D. Basak, Mater. Res. Bull. 42, 875 (2007).

    Article  Google Scholar 

  38. A. Ashour, M.A. Kaid, N.Z. El-Sayed, and A.A. Ibrahim, Appl. Surf. Sci. 252, 7844 (2006).

    Article  Google Scholar 

  39. P.K. Manoj, K.G. Gopchandran, P. Koshy, V.K. Vaidyan, and B. Joseph, Opt. Mater. 28, 1405 (2006).

    Article  Google Scholar 

  40. N.G. Pramod, S.N. Pandey, and P.P. Sahay, Ceram. Int. 38, 4151 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosein Eshghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsoddini, K., Eshghi, H. Effect of Deposition Rate and Annealing on Physical Properties of In2O3 Thin Films Prepared by Spray Pyrolysis: Ultraviolet (UV) Photoconductivity Response. J. Electron. Mater. 46, 4649–4655 (2017). https://doi.org/10.1007/s11664-017-5457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5457-1

Keywords

Navigation