Skip to main content
Log in

Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host–guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet–triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet–triplet exothermic charge transfer. The higher charge carrier mobility in the case of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet–triplet harvesting in the host–guest system. The excitation is transferred to the guest molecules by triplet–triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.K. Basal, A. Penzkofer, W. Holzen, and T. Tsuboi, Mol. Cryst. Liq. Cryst. 467, 21 (2007).

    Article  Google Scholar 

  2. M.A. Baldo and M. Segal, Phys. Status Solidi A 201, 1205 (2004).

    Article  Google Scholar 

  3. M.A. Baldo and S.R. Forrest, Phys. Rev. B 62, 10958 (2000).

    Article  Google Scholar 

  4. K. Goushi, R. Kwong, J.J. Brown, H. Sasabe, and C. Adachi, J. Appl. Phys. 95, 7798 (2004).

    Article  Google Scholar 

  5. P. Juhasz, J. Nevrela, M. Micjan, M. Novota, J. Uhrik, L. Stuchlikova, J. Jakabovic, L. Harmatha, and M. Weis, Beilstein J. Nanotechnol. 7, 47 (2016).

    Article  Google Scholar 

  6. B. Diouf, W.S. Jeon, R. Pode, and J.H. Kwon, Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/794674.

    Google Scholar 

  7. J.S. Park, W.S. Jeon, J.H. Yu, R. Pode, and J.H. Kwon, Thin Solid Films 519, 3259 (2011).

    Article  Google Scholar 

  8. A.A. Shoustikov, Y. You, and M.E. Thompson, IEEE J. Sel. Top. Quantum Electron. 4, 3 (1998).

    Article  Google Scholar 

  9. F. Pschenitzka and J.C. Sturm, Appl. Phys. Lett. 79, 4354 (2001).

    Article  Google Scholar 

  10. J. Shen and J. Yang, J. Appl. Phys. 83, 7706 (1998).

    Article  Google Scholar 

  11. J. Yang and J. Shen, J. Appl. Phys. 84, 2105 (1998).

    Article  Google Scholar 

  12. L.I. Liu, N.N. Barashkov, C.P. Palsule, S. Gangopadhyay, and W.L. Borst, J. Appl. Phys. 88, 4860 (2000).

    Article  Google Scholar 

  13. D. Han, L. Zhao, C. Pang, and H. Zhao, Polyhedron 126, 134 (2017).

    Article  Google Scholar 

  14. R. Srivastava, Mol. Phys. 113, 1451 (2015).

    Article  Google Scholar 

  15. S. Polosan and I.C. Ciobotaru, J. Optoelectron. Adv. Mater. 16, 87 (2014).

    Google Scholar 

  16. S.A. Bagnich, S. Athanasopoulos, A. Rudnick, P. Schroegel, I. Bauer, N.C. Greenham, P. Strohriegl, and A. Köhler, J. Phys. Chem. C 119, 2380 (2015).

    Article  Google Scholar 

  17. S. Polosan, I.C. Ciobotaru, and T. Tsuboi, Mater. Chem. Phys. 162, 822 (2015).

    Article  Google Scholar 

  18. M. Uchida, C. Adachi, T. Koyama, and Y. Taniguchi, J. Appl. Phys. 86, 1680 (1999).

    Article  Google Scholar 

  19. I.C. Ciobotaru, S. Polosan, and C.C. Ciobotaru, J. Lumin. 145, 259 (2014).

    Article  Google Scholar 

  20. Z. Gao, F. Wang, K. Guo, H. Wang, B. Wei, and B. Xu, Opt. Laser Technol. 56, 20 (2014).

    Article  Google Scholar 

  21. P.S. Rudati, D.C. Mueller, and K. Meerholz, J. Appl. Res. Technol. 13, 253 (2015).

    Article  Google Scholar 

  22. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, A.D. Daniels, O. Farkas, A.D. Rabuck, K. Raghavachari, and J.V. Ortiz, Gaussian 03 (Wallingford: Gaussian Inc., 2003).

    Google Scholar 

  23. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  Google Scholar 

  24. P.J. Hay, J. Phys. Chem. A 106, 1634 (2002).

    Article  Google Scholar 

  25. L.A. Sacksteder, A.P. Zipp, E.A. Brown, J. Streich, and J.N. Demas, Inorg. Chem. 29, 4335 (1990).

    Article  Google Scholar 

  26. M. Cai, T. Xiao, E. Hellerich, Y. Chen, R. Shinar, and J. Shinar, Adv. Mater. 23, 3590 (2011).

    Article  Google Scholar 

  27. J. Park, J.S. Park, Y.G. Park, J.Y. Lee, J.W. Kang, J. Liu, L. Dai, and S.H. Jin, Org. Electron. 14, 2114 (2013).

    Article  Google Scholar 

  28. T. Tsuboi, H. Murayama, and A. Penzkofer, Appl. Phys. B 81, 93 (2005).

    Article  Google Scholar 

  29. D.L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  Google Scholar 

  30. T. Tsuzuki and S. Tokito, Adv. Mater. 19, 276 (2007).

    Article  Google Scholar 

  31. B.D. Chin, M.C. Suh, M.H. Kim, S.T. Lee, H.D. Kim, and H.K. Chung, Appl. Phys. Lett. 86, 133505 (2005).

    Article  Google Scholar 

  32. E. Tutiš, D. Berner, and L. Zuppiroli, J. Appl. Phys. 93, 4594 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, and Project No. PN-II-ID-PCE-2011-3-0620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iulia Corina Ciobotaru.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciobotaru, C.C., Polosan, S. & Ciobotaru, I.C. Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices. J. Electron. Mater. 47, 1490–1496 (2018). https://doi.org/10.1007/s11664-017-5945-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5945-3

Keywords

Navigation