Skip to main content

Advertisement

Log in

Enhanced Dielectric Properties of Polyarylene Ether Nitriles Filled with Core–Shell Structured PbZrO3 Around BaTiO3 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Core–shell structured PbZrO3@BaTiO3 nanoparticles (PZ@BT) were prepared through a modified hydrothermal method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). The SEM, TEM images and TEM energy dispersive spectrometer mapping demonstrate that the PZ shell successfully forms on the BT core and the thickness of the PZ shell is approximate at 20 nm. The XRD pattern demonstrates the characteristic diffraction of the PZ shell, and the XPS result also indicates the presence of lead and zirconium, which confirm the fabrication of PZ@BT. Afterwards, the PZ@BT and polyarylene ether nitrile nanocomposites (PZ@BT/PENs) were prepared, and the mechanical, thermal, and their dielectric properties were systematically investigated. With the presence of PZ@BT, the glass transition temperature of the composites is enhanced while their thermal resistance is reduced. The composites show excellent tensile strength even 50 wt.% of PZ@BT is used. After the addition of PZ@BT, the permittivity of the composites is effectively improved. Dielectric loss of the composites shows a slight decrease when the content of PZ@BT increases. Furthermore, the composite with 5 wt.% of PZ@BT shows a breakdown strength of 215 kV/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.M. Dang, J.K. Yuan, S.H. Yao, and R.J. Liao, Adv. Mater. 25, 6334 (2013).

    Article  Google Scholar 

  2. Y.J. Chen, C.L. Zhu, X.Y. Xue, X.L. Shi, and M.S. Cao, Appl. Phys. Lett. 92, 223101 (2008).

    Article  Google Scholar 

  3. Z.M. Dang, Y.Q. Lin, H.P. Xu, C.Y. Shi, S.T. Li, and J. Bai, Adv. Funct. Mater. 18, 1509 (2008).

    Article  Google Scholar 

  4. D.H. Kuo, C.C. Chang, T.Y. Su, W.K. Wang, and B.Y. Lin, Mater. Chem. Phys. 85, 201 (2004).

    Article  Google Scholar 

  5. X.L. Chao, P. Wu, Y. Zhao, P.F. Liang, and Z.P. Yang, J. Mater. Sci. Mater. El. 26, 3044 (2015).

    Article  Google Scholar 

  6. I. Ali, R. Elleithy, S.M. Al-Zahrani, and M.A. Mohsin, Polym. Bull. 67, 1961 (2011).

    Article  Google Scholar 

  7. L.F. Tong, R.B. Wei, J.L. Wang, and X.B. Liu, Mater. Lett. 178, 312 (2016).

    Article  Google Scholar 

  8. Y. Yang, G. Chiesura, T. Vervust, F. Bossuyt, G. Luyckx, J. Degrieck, and J. Vanfleteren, Sens. Actuators A Phys. 243, 103 (2016).

    Article  Google Scholar 

  9. R.B. Wei, K. Li, J.Y. Ma, H.X. Zhang, and X.B. Liu, J. Mater. Sci. Mater. El. 27, 9565 (2016).

    Article  Google Scholar 

  10. Y. Song, Y. Shen, P.H. Hu, Y.H. Lin, M. Li, and C.W. Nan, Appl. Phys. Lett. 101, 152904 (2012).

    Article  Google Scholar 

  11. Y.F. Wang, J. Cui, Q.B. Yuan, Y.Y. Bai, and H. Wang, Adv. Mater. 27, 6658 (2015).

    Article  Google Scholar 

  12. Y. Zhang, Y. Wang, Y. Deng, M. Li, and J.B. Bai, Mater. Lett. 72, 9 (2012).

    Article  Google Scholar 

  13. H.L. Tang, Z. Ma, J.C. Zhong, J. Yang, R. Zhao, and X.B. Liu, Colloids Surf. A 384, 311 (2011).

    Article  Google Scholar 

  14. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, and G.H. Hu, Prog. Mater. Sci. 57, 660 (2012).

    Article  Google Scholar 

  15. L.Y. Xie, X.Y. Huang, Y.H. Huang, K. Yang, and P.K. Jiang, J. Phys. Chem. C 117, 22525 (2013).

    Article  Google Scholar 

  16. M. Zhu, X.Y. Huang, K. Yang, X. Zhai, J. Zhang, J.L. He, and P.K. Jiang, ACS Appl. Mater. Interfaces 6, 19644 (2014).

    Article  Google Scholar 

  17. X. Lin, P.H. Hu, Z.Y. Jia, and S.M. Gao, J. Mater. Chem. A 4, 2314 (2016).

    Article  Google Scholar 

  18. G. Xu, W. Jiang, M. Qian, X.X. Chen, Z.B. Li, and G.R. Han, Cryst. Growth Des. 9, 13 (2008).

    Article  Google Scholar 

  19. M. Rabuffi and G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002).

    Article  Google Scholar 

  20. S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, M.V. Murugendrappa, and B. Angadi, Trans. Indian Ceram. Soc. 75, 181 (2016).

    Article  Google Scholar 

  21. S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, and B. Sahoo, J. Magn. Magn. Mater. 418, 122 (2016).

    Article  Google Scholar 

  22. S. Madolappa, A.V. Anupama, P.W. Jaschin, K.B.R. Varma, and B. Sahoo, Bull. Mater. Sci. 39, 593 (2016).

    Article  Google Scholar 

  23. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, and D.K. Pradhan, J. Mater. Sci. Mater. Electron. 29, 6966 (2018).

    Article  Google Scholar 

  24. G. Tsangaris, G. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).

    Article  Google Scholar 

  25. R.B. Wei, J.L. Wang, H.X. Zhang, W.H. Han, and X.B. Liu, Polymers 9, 342 (2017).

    Article  Google Scholar 

  26. Y. Feng, W.L. Li, Y.F. Hou, Y. Yu, W.P. Cao, T.D. Zhang, and W.D. Fei, J. Mater. Chem. C 3, 1250 (2015).

    Article  Google Scholar 

  27. M. Rahaman, T.K. Chaki, and D. Khastgir, Eur. Polym. J. 48, 1241 (2012).

    Article  Google Scholar 

  28. X.J. Zhang, G.S. Wang, Y.Z. Wei, L. Guo, and M.S. Cao, J. Mater. Chem. A 1, 12115 (2013).

    Article  Google Scholar 

  29. C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, and L.H. Feng, Carbon 55, 116 (2013).

    Article  Google Scholar 

  30. S.B. Luo, S.H. Yu, R. Sun, and C.P. Wong, ACS Appl. Mater. Interfaces 6, 176 (2013).

    Article  Google Scholar 

  31. X. Zhang, Y. Shen, Q.H. Zhang, L. Gu, Y.H. Hu, J.W. Du, Y.H. Lin, and C.W. Nan, Adv. Mater. 27, 819 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Natural Science Foundation of China (51603029 and 51773028), China Postdoctoral Science Foundation (2017M623001) and National Postdoctoral Program for Innovative Talents (BX201700044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renbo Wei or Xiaobo Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Yang, R., Xiong, Z. et al. Enhanced Dielectric Properties of Polyarylene Ether Nitriles Filled with Core–Shell Structured PbZrO3 Around BaTiO3 Nanoparticles. J. Electron. Mater. 47, 6177–6184 (2018). https://doi.org/10.1007/s11664-018-6509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6509-x

Keywords

Navigation