Skip to main content
Log in

High-Temperature Stability of Hot-Pressed Sr-Doped Ca3Co4O9

  • Topical Collection: International Conference on Thermoelectrics 2018
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bulk textured Ca2.93Sr0.07Co4O9 samples have been prepared by hot uniaxial pressing followed by thermal treatment at 800°C under air for between 0 h and 1532 h. The microstructural, thermoelectric, and mechanical properties as well as density of all the samples were evaluated as a function of the duration of thermal treatment. Scanning electron microscopy characterization showed that the samples were mainly composed of Sr-doped Ca3Co4O9 thermoelectric (TE) phase, accompanied by minor amounts of Sr-free Ca3Co2O6 secondary phase. After an initial decrease of density after the first aging treatment, it remained practically constant for longer durations. This behavior is reflected in the mechanical properties, which slightly decreased after 12 h of thermal treatment, compared with the as-hot-pressed state, but remained practically constant after larger durations. However, the TE properties were not affected by the aging process, lying within typical errors independently of the aging duration. Moreover, the power factor values measured at 850°C (> 0.60 mW/K2 m) lie among the highest obtained so far for this kind of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. International Energy Agency. https://www.iea.org. Accessed 6 Oct 2018.

  2. K.H. Solangi, M.R. Islam, R. Saidur, N.A. Rahim, and H. Fayaz, Renew. Sustain. Energy Rev. 15, 2149 (2011).

    Article  Google Scholar 

  3. L. Gibson, E.N. Wilman, and W.F. Laurance, Trends Ecol. Evol. 32, 922 (2017).

    Article  Google Scholar 

  4. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, 1st ed. (Boca Raton: CRC Press, 2006), p. 1-1.

    Google Scholar 

  5. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. 32, 486 (2014).

    Article  Google Scholar 

  6. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, 12685 (1997).

    Article  Google Scholar 

  7. Y. Huang, B. Zhao, J. Fang, R. Ang, and Y. Sun, J. Appl. Phys. 110, 123713 (2011).

    Article  Google Scholar 

  8. F. Delorme, C.F. Martin, P. Marudhachalam, D.O. Ovono, and G. Guzman, J. Alloys Compd. 509, 2311 (2011).

    Article  Google Scholar 

  9. K. Rubesova, T. Hlasek, V. Jakes, S. Huber, J. Hejtmanek, and D. Sedmidubsky, J. Eur. Ceram. Soc. 35, 525 (2015).

    Article  Google Scholar 

  10. M.A. Madre, Sh Rasekh, J.C. Diez, and A. Sotelo, Mater. Lett. 64, 2566 (2010).

    Article  Google Scholar 

  11. W. Kobayashi, S. Hebert, H. Muguerra, D. Grebille, D. Pelloquin, and A. Maignan, in Proceedings ICT´07: 26th International Conference on Thermoelectrics (2007), pp. 117–120.

  12. A.I. Klyndyuk, N.S. Krasutskaya, and E.A. Chizhova, Glass Phys. Chem 44, 100 (2018).

    Article  Google Scholar 

  13. H. Hao, H. Yang, Y. Liu, and X. Hu, J. Mater. Sci. Technol. 27, 525 (2011).

    Article  Google Scholar 

  14. F. Delorme, C. Chen, B. Pignon, F. Schoenstein, L. Perriere, and F. Giovannelli, J. Eur. Ceram. Soc. 37, 2615 (2017).

    Article  Google Scholar 

  15. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  Google Scholar 

  16. S. Li, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, and S. Sodeoka, Ceram. Int. 27, 321 (2001).

    Article  Google Scholar 

  17. F. Delorme, P. Diaz-Chao, and F. Giovannelli, J. Electroceram. 40, 107 (2018).

    Article  Google Scholar 

  18. I.V. Matsukevich, A.I. Klyndyuk, E.A. Tugova, A.N. Kovalenko, A.A. Marova, and N.S. Krasutskaya, Inorg. Mater. 52, 593 (2016).

    Article  Google Scholar 

  19. M. Karppinen, H. Fjellvag, T. Konno, Y. Morita, T. Motohashi, and H. Yamauchi, Chem. Mater. 16, 2790 (2004).

    Article  Google Scholar 

  20. J. Hejtmanek, K. Knizek, M. Marysko, Z. Jirak, D. Sedmidubsky, O. Jankovsky, S. Huber, P. Masschelein, and B. Lenoir, J. Appl. Phys. 111, 07D715 (2012).

    Article  Google Scholar 

  21. S. Butt, Y.-C. Liu, J.-L. Lan, K. Shehzad, B. Zhan, Y. Li, and C.-W. Nan, J. Alloys Compd. 588, 277 (2014).

    Article  Google Scholar 

  22. H. Wang, X. Sun, X. Yan, D. Huo, X. Li, L.-G. Li, and X. Ding, J. Alloys Compd. 582, 294 (2014).

    Article  Google Scholar 

  23. M. Prevel, S. Lemonnier, Y. Klein, S. Hebert, and D. Chateigner, J. Appl. Phys. 98, 093706 (2005).

    Article  Google Scholar 

  24. D. Sedmidubský, V. Jakeš, O. Jankovský, J. Leitner, Z. Sofer, and J. Hejtmánek, J. Solid State Chem. 194, 199 (2012).

    Article  Google Scholar 

  25. F. Kahraman, M.A. Madre, Sh Rasekh, C. Salvador, P. Bosque, M.A. Torres, J.C. Diez, and A. Sotelo, J. Eur. Ceram. Soc. 35, 3835 (2015).

    Article  Google Scholar 

  26. J.G. Noudem, D. Kenfaui, D. Chateigner, and M. Gomina, J. Electron. Mater. 40, 1100 (2011).

    Article  Google Scholar 

  27. E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodnichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, and M. Soulier, Rev. Sci. Instrum. 86, 011301 (2015).

    Article  Google Scholar 

  28. Sh. Rasekh, M.A. Torres, G. Constantinescu, M.A. Madre, J.C. Diez, and A. Sotelo, J. Mater. Sci. Mater. Electron. 24, 2309 (2013).

    Article  Google Scholar 

  29. T. Schulz and J. Topfer, J. Alloys Compd. 659, 122 (2016).

    Article  Google Scholar 

  30. A. Sotelo, F.M. Costa, N.M. Ferreira, A. Kovalevsky, M.C. Ferro, V.S. Amaral, J.S. Amaral, Sh Rasekh, M.A. Torres, M.A. Madre, and J.C. Diez, J. Eur. Ceram. Soc. 36, 1025 (2016).

    Article  Google Scholar 

  31. Y. Zhang, J. Zhang, and Q. Lu, Ceram. Int. 33, 1305 (2007).

    Article  Google Scholar 

  32. J.G. Noudem, D. Kenfaui, D. Chateigner, and M. Gomina, Scr. Mater. 66, 258 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Spanish MINECO-FEDER (MAT2017-82183-C3-1-R), the Basque Government Industry Department through the Elkartek program (Exp: KK-2017/00099 - HiTOM), and the Gobierno de Aragón-FEDER (Research Group T 54-17R). The authors would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Madre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madre, M.A., Urrutibeascoa, I., García, G. et al. High-Temperature Stability of Hot-Pressed Sr-Doped Ca3Co4O9. J. Electron. Mater. 48, 1965–1970 (2019). https://doi.org/10.1007/s11664-018-6748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6748-x

Keywords

Navigation