Skip to main content

Advertisement

Log in

Highly Conductive Carbon-Based Thin Films Produced by Low-Energy Electron Irradiation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly conductive carbon-based thin films have been produced by low-energy electron irradiation. Low-energy electron irradiation at a lower density of electrons eliminates the sp3 hybridization of the carbon atoms by reducing the chemical groups on the surface. Irradiated carbon-based thin films became highly conductive layers that could be used as electrodes for optoelectronic devices. The electrical conductivity σ reached 3 × 104 S/m in the case of samples irradiated at a lower density, with a mean value between 3 × 105 S/m and 3.3 × 102 S/m for highly crystalline graphite structures. The increasing (002) peak diffraction and decreasing intensity ratio ID/IG in the Raman spectra as well as the decreasing bandgap in photoluminescence measurements demonstrated the reduction of oxygen-induced defects in these thin films.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Sun, Z.L. Wang, Z.J. Shi, G.Z. Ran, W.J. Xu, Z.Y. Wang, Y.Z. Li, L. Dai, and G.G. Qin, Appl. Phys. Lett. 96, 133301 (2010). https://doi.org/10.1063/1.3373855

    Article  CAS  Google Scholar 

  2. J. Hwang, H.K. Choi, J. Moon, T.Y. Kim, J.W. Shin, C.W. Joo, J.H. Han, D.H. Cho, J.W. Huh, S.Y. Choi, J.I. Lee, and H.Y. Chu, Appl. Phys. Lett. 100, 133304 (2012). https://doi.org/10.1063/1.3697639.

    Article  CAS  Google Scholar 

  3. T.H. Han, S.H. Jeong, Y. Lee, H.K. Seo, S.J. Kwon, M.H. Park, and T.W. Lee, J. Inform. Display 16, 71 (2015). https://doi.org/10.1080/15980316.2015.1016127.

    Article  CAS  Google Scholar 

  4. T.H. Han, M.H. Park, S.J. Kwon, S.H. Bae, H.K. Seo, H. Cho, J.H. Ahn, and T.W. Lee, NPG Asia Mater. 8, e303 (2016). https://doi.org/10.1038/am.2016.108.

    Article  CAS  Google Scholar 

  5. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986). https://doi.org/10.1063/1.96937.

    Article  CAS  Google Scholar 

  6. P. Li, C. Chen, J. Zhang, S. Li, B. Sun, and Q. Bao, Front. Mater. 1, 26 (2014). https://doi.org/10.3389/fmats.2014.00026.

    Article  Google Scholar 

  7. H. Park, S. Chang, M. Smith, S. Gradecak, and J. Kong, Sci. Rep. 3, 1581 (2013). https://doi.org/10.1038/srep01581.

    Article  CAS  Google Scholar 

  8. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008). https://doi.org/10.1021/nn700375n.

    Article  CAS  Google Scholar 

  9. S.P. Pang, H.N. Tsao, X.L. Feng, and K. Müllen, Adv. Mater. 21, 3488 (2009). https://doi.org/10.1002/adma.200803812.

    Article  CAS  Google Scholar 

  10. X. Wang, L.J. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008). https://doi.org/10.1021/nl072838r.

    Article  CAS  Google Scholar 

  11. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008). https://doi.org/10.1038/nnano.2008.83.

    Article  CAS  Google Scholar 

  12. X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, and H.J. Dai, Nat. Nanotechnol. 3, 538 (2008). https://doi.org/10.1038/nnano.2008.210.

    Article  CAS  Google Scholar 

  13. S. Park, and R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58.

    Article  CAS  Google Scholar 

  14. G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, and W.F. Su, M. Chhowalla Appl. Phys. Lett. 92, 233305 (2008). https://doi.org/10.1063/1.2937846.

    Article  CAS  Google Scholar 

  15. Y. Xu, G. Long, L. Huang, Y. Huang, X. Wan, Y. Ma, and Y. Chen, Carbon 48, 3308 (2010). https://doi.org/10.1016/j.carbon.2010.05.017.

    Article  CAS  Google Scholar 

  16. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y.M. Lam, and H. Zhang, ACS Nano 4, 5263 (2010). https://doi.org/10.1021/nn1015874.

    Article  CAS  Google Scholar 

  17. V.C. Tung, L.M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, and Y. Yang, Nano Lett. 9, 1949 (2009). https://doi.org/10.1021/nl9001525.

    Article  CAS  Google Scholar 

  18. H. Park, P.R. Brown, V. Bulovic and J. Kong, Nano Lett. 12, 133 (2011). https://doi.org/10.1021/nl2029859

  19. Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, and K. Müllen, Adv. Mater. 21, 3191 (2009). https://doi.org/10.1002/adma.200803808.

    Article  CAS  Google Scholar 

  20. Y.Y. Choi, S.J. Kang, H.K. Kim, W.M. Choi, and S.I. Na, Sol. Energy Mater. Sol. Cells 96, 281 (2012). https://doi.org/10.1016/j.solmat.2011.09.031.

    Article  CAS  Google Scholar 

  21. L.G. De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010). https://doi.org/10.1021/nn901587x.

    Article  CAS  Google Scholar 

  22. Y. Wang, S.W. Tong, X.F. Xu, B. Özyilmaz, and K.P. Loh, Adv. Mater. 23, 1514 (2011). https://doi.org/10.1002/adma.201003673.

    Article  CAS  Google Scholar 

  23. C.L. Hsu, C.T. Lin, J.H. Huang, C.W. Chu, K.H. Wei, and L.J. Li, ACS Nano 6, 5031 (2012). https://doi.org/10.1021/nn301721q.

    Article  CAS  Google Scholar 

  24. H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F.Z. Guo, and Y. Watanabe, Phys. Rev. B 79, 125437 (2009). https://doi.org/10.1103/PhysRevB.79.125437.

    Article  CAS  Google Scholar 

  25. O.O. Voitsihovska, R.M. Rudenko, V.Y. Povarchuk, A.A. Abakumov, I.B. Bychko, M.O. Stetsenko, and M.P. Rudenko, Mater. Lett. 236, 334 (2019). https://doi.org/10.1016/j.matlet.2018.10.119.

    Article  CAS  Google Scholar 

  26. Y. Yang, L. Chen, D.Y. Li, R.B. Yi, J.W. Mo, M.H. Wu, and G. Xu, RSC Adv. 9, 3597 (2019). https://doi.org/10.1039/C8RA06797J.

    Article  CAS  Google Scholar 

  27. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007). https://doi.org/10.1039/B613962K.

    Article  CAS  Google Scholar 

  28. L. G. Cançado K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, M. A. Pimenta, Appl. Phys. Lett. 88 163106 (2006). https://doi.org/10.1063/1.2196057

  29. A. R. Badzian, P. K. Backmann, T. Hartnett, T. Badzian, R. Messier, Les Editions de Physique, 1987, XVII, 67.

  30. M.S. Dresselhaus, and R. Kalish, Springer-Verlag (Berlin: Springer Series in Materials Science, 1992).

    Google Scholar 

  31. R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002). https://doi.org/10.1103/PhysRevLett.88.027401

  32. S. Reich, C. Thomsen, Phil. Trans. R. Soc. Lond. A 362, 2271 (2004). https://doi.org/10.1098/rsta.2004.1454

  33. F. Tuinstra, and J.L. Koenig, J. Phys. Chem. 53, 1126 (1970). https://doi.org/10.1063/1.1674108.

    Article  CAS  Google Scholar 

  34. W.F. Edgell, T.R. Riethof, and C. Ward, J. Mol. Spectr. 11, 92 (1963). https://doi.org/10.1016/0022-2852(63)90010-9.

    Article  CAS  Google Scholar 

  35. C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.W. Chen, Angew. Chem. Int. Ed. 51, 6662 (2012). https://doi.org/10.1002/anie.201200474.

    Article  CAS  Google Scholar 

  36. S. Yumitori, J. Mater. Sci. 35, 139 (2000). https://doi.org/10.1023/A:1004761103919.

    Article  CAS  Google Scholar 

  37. J. Ning, J. Wang, X. Li, T. Qiu, B. Luo, L. Hao, M. Liang, B. Wang, and L. Zhi, J. Mater. Chem. A 2, 10969 (2014). https://doi.org/10.1039/C4TA00527A.

    Article  CAS  Google Scholar 

  38. A. P. Sehrawat, S. S. Islam, P. Mishra, S. Ahmad, Sci. Rep. 8 3537 (2018). https://doi.org/10.1038/s41598-018-21686-2

  39. H.O. Pierson, Handbook of Carbon, Graphite, Diamond & Fullerenes. Noyes Publications Mill Road, Park Ridge, New Jersey 07656, 61 (1993). ISBN: 0-8155-1339-9

  40. I. L. Spain, Chemistry and Physics of Carbon, (P. L.Walker and P. A. Thrower, eds.), 8 Marcel Dekker Inc., New York (1973).

  41. https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499

  42. Y. Kaburagi, T. Kimura, A. Yoshida, and Y. Hishiyama, TANSO 253, 106 (2012).

    Article  CAS  Google Scholar 

  43. K. Stella, D. Burstel, S. Franzka, O. Posth, and D. Diesing, J. Phys. D: Appl. Phys. 42, 135417 (2009). https://doi.org/10.1088/0022-3727/42/13/135417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding through POC-G Project MAT2IT (Contract 54/2016, SMIS code 105726, Intermediary Body-Romanian Ministry of Research and Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Polosan.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest related to this paper or with other people or organizations that could inappropriately influence this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciobotaru, C.C., Ciobotaru, I.C., Iosub, D.G. et al. Highly Conductive Carbon-Based Thin Films Produced by Low-Energy Electron Irradiation. J. Electron. Mater. 50, 5529–5541 (2021). https://doi.org/10.1007/s11664-021-09058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09058-5

Keywords

Navigation