Skip to main content
Log in

A Compact High Gain Metamaterial-Based Antenna for Terahertz Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, a compact inset-fed microstrip patch antenna integrated with a double negative metamaterial superstrate is presented for terahertz applications. A rectangular-shaped inset-fed antenna is utilized as the main radiator, which gives an impedance bandwidth of 1.281–1.354 THz. To improve the bandwidth and gain characteristics, a nested rectangular ring-shaped metamaterial structure is designed. This structure shows double negative properties at the resonance frequency, which enhances the gain and bandwidth simultaneously. The designed antenna achieves a gain improvement of 1.9 dB at Φ = 0° and Φ = 90°. A reflection coefficient of −24 dB is achieved with a bandwidth enhancement of 26% at 1.32 THz. The antenna maintains very good radiation characteristics, and the peak gain value reaches 7.72 dB at 1.32 THz. This metamaterial-based antenna can be used for biomedical, imaging, and radar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977 (2013).

    Article  CAS  Google Scholar 

  2. J.I. Nishizawa, T. Sasaki, and K. Suto, Thz imaging of nucleobases and cancerous tissue using a gap THz-wave generator. Opt. Commun. 244, 469 (2005).

    Article  CAS  Google Scholar 

  3. M. Naftaly, A.P. Foulds, R.E. Miles, and A.G. Davies, Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties. Int. J. Infrared Milli Waves 26, 55 (2005).

    Article  CAS  Google Scholar 

  4. D. Woolard, R. Brown, M. Pepper, and M. Kemp, Terahertz frequency sensing and imaging: a time of reckoning future applications. Proc. IEEE 93, 1722 (2005).

    Article  CAS  Google Scholar 

  5. A. Sharma, and G. Singh, Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. J Infrared, Milli Terahertz Waves 30, 1–7 (2009). https://doi.org/10.1007/s10762-008-9416-z.

    Article  CAS  Google Scholar 

  6. J.-H. Son, Terahertz electromagnetic interactions with biological matter and their applications. J. Appl. Phys. 105, 102033 (2009).

    Article  Google Scholar 

  7. K. Ranjan, and G. Singh, Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Phys. Technol. 55, 32 (2012).

    Article  Google Scholar 

  8. Z.R. Hajiyat, A. Ismail, A. Sali, and M.N. Hamidon, Antenna in 6G wireless communication system: specifications, challenges and research objectives. Optik 231, 166415 (2021).

    Article  Google Scholar 

  9. S. Singhal, Elliptical ring terahertz fractal antenna. Optik 194, 163129 (2019).

    Article  CAS  Google Scholar 

  10. Q. Rubani, S.H. Gupta, S. Pani, and A. Kumar, Design and analysis of a terahertz antenna for wireless body area networks. Optik 179, 684–690 (2019). https://doi.org/10.1016/j.ijleo.2018.10.202.

    Article  Google Scholar 

  11. Q. Rubani, S.H. Gupta, and A. Kumar, Design and analysis of circular patch antenna for WBAN at terahertz frequency. Optik 185, 529–536 (2019). https://doi.org/10.1016/j.ijleo.2019.03.142.

    Article  Google Scholar 

  12. A. Sharma, V K Dwivedi, and G. Singh, (2008). Thz rectangular patch microstrip antenna design using photonic crystal as substrate In progress electromagnetic research symposium, Cambridge (pp. 161-165)

  13. M. Labidi, and F. Choubani, Performance enhancement of metamaterial loop antenna for terahertz applications. Opt. Mater. 82, 116 (2018).

    Article  CAS  Google Scholar 

  14. U. Kumar, D. Kumar, M. R. Tripathy, (2016) Metamaterial based fractal antenna for THz application. (PIERS), pp. 3814-3814

  15. Y. Denizhan Sirmaci, C.K. Akin, and C. Sabah, Fishnet based metamaterial loaded THz patch antenna. Optic. Quant. Electron 48, 168 (2016).

    Article  Google Scholar 

  16. A.A. Abdelrehim, and H. Ghafouri-Shiraz, High performance terahertz antennas based on split ring resonator and thin wire metamaterial structures. Microw. Optic. Technol. Lett. 58, 382–389 (2016). https://doi.org/10.1002/mop.29580.

    Article  Google Scholar 

  17. A.K. Singh, M.P. Abegaonkar, and S.K. Koul, High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel. Propag. Lett. 16, 2388–2391 (2017). https://doi.org/10.1109/LAWP.2017.2719864.

    Article  Google Scholar 

  18. S. Singhal, Ultrawideband elliptical microstrip antennas for terahertz applications. Microw. Opt. Technol. Lett. 61, 2366 (2019).

    Article  Google Scholar 

  19. C.A. Balanis, (2016). (4th ed.) Antenna theory: analysis and design

  20. S. Verma, and J.A. Ansari, Analysis of U-slot loaded truncated corner rectangular microstrip patch antenna for broadband operation. AEU Int. J. Electron. Commun. 69, 1483–1488 (2015). https://doi.org/10.1016/j.aeue.2015.07.002.

    Article  Google Scholar 

  21. S. Roy, and U. Chakraborty, Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials. IET Commun. 12, 1448 (2018).

    Article  Google Scholar 

  22. S.K. Patel, and Y. Kosta, Liquid metamaterial based microstrip antenna. Microw. Opt. Technol. Lett. 60, 318–322 (2018). https://doi.org/10.1002/mop.30963.

    Article  Google Scholar 

  23. A.B. Numan, and M.S. Sharawi, Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas Propag. Mag. 55, 202–211 (2013). https://doi.org/10.1109/MAP.2013.6735515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishita Aggarwal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, I., Pandey, S., Tripathy, M.R. et al. A Compact High Gain Metamaterial-Based Antenna for Terahertz Applications. J. Electron. Mater. 51, 4589–4600 (2022). https://doi.org/10.1007/s11664-022-09716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09716-2

Keywords

Navigation