Skip to main content
Log in

Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-phase manganese oxide, α-Mn2O3 , nanoparticles have been prepared successfully using different amounts of 2w/v% polyvinylpyrrolidone (PVP) via co-precipitation. The samples prepared with 1 ml, 2 ml, 5 ml and 10 ml PVP are represented as S1, S2, S3 and S4, respectively. The effect of PVP amount on the structural, microstructural, magnetic and optical properties was systematically investigated. Rietveld refinement of the x-ray diffraction patterns revealed the single-phase formation of α-Mn2O3 nanoparticles. The average crystallite sizes of the particles was found to be minimum for S2 with lowest lattice parameter and highest strain. High-resolution field emission scanning electron microscopy confirmed the smallest size of S2 with spherical morphology and smooth surfaces. Energy dispersive x-ray spectroscopy and maps showed uniform distribution of the elements favouring the Mn2O3 composition. Raman and Fourier transform infrared spectra displayed characteristic bands corresponding to α-Mn2O3. The magnetic susceptibility revealed the antiferromagnetic nature of α-Mn2O3 nanoparticles with Néel temperature, TN ~ 80.6 K for S2. The increase in PVP amount above 2 ml increased the TN as well as the magnetic frustration. The band gap was found to be maximum (1.8 eV) for S2 nanoparticles. Briefly, the smallest size nanoparticles with spherical shape and smooth surfaces were obtained for 2 ml PVP with the lowest magnetic frustration and highest band gap indicating the optimum amount of PVP to be 2 ml. Thereby, the results have revealed the limiting behaviour of polyvinylpyrrolidone chains operating during synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Niu, H. Wei, K. Tang, W. Liu, G. Zhao, and Y. Yang, Solvothermal Synthesis of 1D Nanostructured Mn2O3: Effect of Ni2+ and Co2+ Substitution on the Catalytic Activity of Nanowires. RSC Adv. 5, 66271 (2015).

    Article  CAS  Google Scholar 

  2. V. Subramanian, H. Zhu, and B. Wei, Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material. J. Power Sources 159, 361 (2006).

    Article  CAS  Google Scholar 

  3. R.A.P. Ribeiro, M.C. Oliveira, E. Longo, S.R. de Lazaro, R. Nikam, P.S. Goyal, S. Radha, and S. Rayaprol, Magnetism and DFT Calculations for Understanding Magnetic Ground State of Fe Doped Mn2O3. J. Alloys Compd. 861, 158567 (2021).

    Article  CAS  Google Scholar 

  4. P. Amsaveni, A. Nivetha, C. Sakthivel, C.S. Philip, and I. Prabha, Effectiveness of Surfactants for Unique Hierarchical Mn2O3 Nanomaterials as Enhanced Oxidative Catalysts, Antibacterial Agents, and Photocatalysts. J. Phys. Chem. Solids 144, 109429 (2020).

    Article  CAS  Google Scholar 

  5. S. Gnanam and V. Rajendran, Facile Hydrothermal Synthesis of Alpha Manganese Sesquioxide (α-Mn2O3) Nanodumb-Bells: Structural, Magnetic, Optical and Photocatalytic Properties. J. Alloys Compd. 550, 463 (2013).

    Article  CAS  Google Scholar 

  6. S.K. Ghosh, Diversity in the Family of Manganese Oxides at the Nanoscale : From Fundamentals to Applications. ACS Omega 5, 25493–25504 (2020).

    Article  CAS  Google Scholar 

  7. N.E. Rajeevan, P.P. Pradyumnan, R. Kumar, D.K. Shukla, S. Kumar, A.K. Singh, S. Patnaik, S.K. Arora, and I.V. Shvets, Magnetoelectric Properties of BixCo2-XMnO4 (0≤x≤0.3). Appl. Phys. Lett. 92, 111 (2008).

    Article  CAS  Google Scholar 

  8. S.K. Sharma, R. Kumar, S. Kumar, V.V. Siva Kumar, M. Knobel, V.R. Reddy, A. Banerjee, and M. Singh, Magnetic Study of Mg0.95Mn0.05Fe2O4 Ferrite Nanoparticles. Solid State Commun. 141, 203 (2007).

    Article  CAS  Google Scholar 

  9. G. Anjum, R. Kumar, S. Mollah, D. K. Shukla, S. Kumar, and C. G. Lee, Structural, Dielectric, and Magnetic Properties of La0.8Bi 0.2Fe1-XMnxO3 (0.0≤x≤0.4) Multiferroics, J. Appl. Phys. 107, 0 (2010).

  10. M.S. Anwar, S. Kumar, F. Ahmed, N. Arshi, G.W. Kim, and B.H. Koo, Above Room Temperature Magnetic Transition and Magnetocaloric Effect in La0.66Sr0.34MnO3. J. Korean Phys. Soc. 60, 1587 (2012).

    Article  CAS  Google Scholar 

  11. S.A. Ansari, N. Parveen, H.M. Kotb, and A. Alshoaibi, Hydrothermally Derived Three-Dimensional Porous Hollow Double-Walled Mn2O3 Nanocub Es as Superior Electrode Materials for Supercapacitor Applications. Electrochim. Acta 355, 136783 (2020).

    Article  CAS  Google Scholar 

  12. L. Suryanti, S.E.I. Suryani, H. Hartatiek, N. Nasikhudin, J. Utomo, A. Taufiq, R. Suryana, Z. Aspanut, and M. Diantoro, The Effect of Mn2O3 Nanoparticles on Its Specific Capacitance of Symmetric Supercapacitors FC-ZnO-x (Mn2O3). Mater. Today Proc. 44, 3355 (2021).

    Article  CAS  Google Scholar 

  13. M.S. Anwar, S. Kumar, F. Ahmed, N. Arshi, G.W. Kim, C.G. Lee, and B.H. Koo, Large Magnetic Entropy Change in La0.55Ce0.2Ca0.25MnO3 Perovskite. J. Magn. 16, 457 (2011).

    Article  Google Scholar 

  14. M.S. Anwar, S. Kumar, F. Ahmed, S.N. Heo, G.W. Kim, and B.H. Koo, Study of Magnetic Entropy Change in La0.65Sr0.35Cu0.1Mn0.9O3 Complex Perovskite. J. Electroceramics 30, 46 (2013).

    Article  CAS  Google Scholar 

  15. J.H. Mokkath, M. Jahan, M. Tanaka, S. Tominaka, and J. Henzie, Temperature-Dependent Electronic Structure of Bixbyite α-Mn2O3 and the Importance of a Subtle Structural Change on Oxygen Electrocatalysis. Sci. Technol. Adv. Mater. 22, 141 (2021).

    Article  CAS  Google Scholar 

  16. A. Indra, P.W. Menezes, F. Schuster, and M. Driess, Significant Role of Mn ( III ) Sites in e 1 g Configuration in Manganese Oxide Catalysts for Efficient Artificial Water Oxidation. J. Photochem. Photobiol. B Biol. 152, 156 (2015).

    Article  CAS  Google Scholar 

  17. S. Geller, Structures of Alpha-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and Relation to Magnetic Ordering. Acta Cryst. B 27, 821 (1971).

    Article  Google Scholar 

  18. M. Sharrouf, R. Awad, M. Roumié, and S. Marhaba, Structural, Optical and Room Temperature Magnetic Study of Mn2O3 Nanoparticles. Mater. Sci. Appl. 6, 850 (2015).

    CAS  Google Scholar 

  19. M. Regulski, R. Przeniosło, I. Sosnowska, D. Hohlwein, and R. Schneider, Neutron Diffraction Study of the Magnetic Structure of α-Mn2O3. J. Alloys Compd. 362, 236 (2004).

    Article  CAS  Google Scholar 

  20. M. Karuppaiah, P. Sakthivel, S. Asaithambi, R. Murugan, G. Anandha, R. Yuvakkumar, and G. Ravi, Solvent Dependent Morphological Modification of Micro-Nano Assembled Mn2O3/NiO Composites for High Performance Supercapacitor Applications. Ceram. Int. 45, 4298 (2019).

    Article  CAS  Google Scholar 

  21. H. Ju, X.D. Liu, C.Y. Tao, F. Yang, X.L. Liu, X. Luo, and L. Zhang, Prussian Blue Analogue Derived Low-Crystalline Mn2O3/Co3O4 as High- Performance Supercapacitor Electrode. J. Alloys Compd. 856, 157134 (2021).

    Article  CAS  Google Scholar 

  22. B.L. Vijayan, S.G. Krishnan, N.K.M. Zain, M. Harilal, A. Yar, I.I. Misnon, J.O. Dennis, M.M. Yusoff, and R. Jose, Large Scale Synthesis of Binary Composite Nanowires in the Mn2O3-SnO2 System with Improved Charge Storage Capabilities. Chem. Eng. J. 327, 962 (2017).

    Article  CAS  Google Scholar 

  23. Z.H. Wang, D.Y. Geng, W.J. Hu, W.J. Ren, and Z.D. Zhang, Magnetic Properties and Exchange Bias in Mn2O3∕Mn3O4 Nanoclusters. J. Appl. Phys. 105, 07A315 (2009).

    Article  CAS  Google Scholar 

  24. E. Cockayne, I. Levin, H. Wu, and A. Llobet, The Magnetic Structure of Bixbyite α-Mn2O3: A Combined Density Functional Theory DFT+U and Neutron Diffraction Study. Phys. Rev. B 87, 184413 (2013).

    Article  CAS  Google Scholar 

  25. S. Jana, Advances in Nanoscale Alloys and Intermetallics: Low Temperature Solution Chemistry Synthesis and Application in Catalysis. Dalt. Trans. 44, 18692 (2015).

    Article  CAS  Google Scholar 

  26. M.F. Silva, L.A.S. De Oliveira, M.A. Ciciliati, M.K. Lima, F.F. Ivashita, D.M. Fernandes De Oliveira, A.A.W. Hechenleitner, and E.A.G. Pineda, The Effects and Role of Polyvinylpyrrolidone on the Size and Phase Composition of Iron Oxide Nanoparticles Prepared by a Modified Sol-Gel Method. J. Nanomater. 2017, 17 (2017).

    Article  Google Scholar 

  27. P. Díaz-Núñez, J. González-Izquierdo, G. González-Rubio, A. Guerrero-Martínez, A. Rivera, J.M. Perlado, L. Bañares, and O. Peña-Rodríguez, Effect of Organic Stabilizers on Silver Nanoparticles Fabricated by Femtosecond Pulsed Laser Ablation. Appl. Sci. 7, 793 (2017).

    Article  CAS  Google Scholar 

  28. N. Arshi, F. Ahmed, S. Kumar, M.S. Anwar, B.H. Koo, and C.G. Lee, Comparative Study of the Ag/PVP Nanocomposites Synthesized in Water and in Ethylene Glycol. Curr. Appl. Phys. 11, S346 (2011).

    Article  Google Scholar 

  29. J. Tientong, S. Garcia, C.R. Thurber, and T.D. Golden, Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction. J. Nanotechnol. 2014, 1 (2014).

    Article  CAS  Google Scholar 

  30. A. Khort, S. Roslyakov, and P. Loginov, Solution Combustion Synthesis of Single-Phase Bimetallic Nanomaterials. Nano-Struct. Nano-Objects 26, 100727 (2021).

    Article  CAS  Google Scholar 

  31. J. Li, K. Inukai, Y. Takahashi, A. Tsuruta, and W. Shin, Effect of PVP on the Synthesis of High-Dispersion Core-Shell Barium-Titanate–Polyvinylpyrrolidone Nanoparticles. J. Asian Ceram. Soc. 5, 216 (2017).

    Article  Google Scholar 

  32. J. Rodríguez-carvajal, Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction, (IUCr). Newsl. 26, 12 (2001).

    Google Scholar 

  33. G. Will, Powder Diffraction the Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data (Berlin Heidelberg: Springer-Verlag, 2006).

    Google Scholar 

  34. Y. Li, L. Liu, L. Liu, Y. Liu, H. Zhang, and X. Han, Efficient Oxidation of Phenol by Persulfate Using Manganite as a Catalyst. J. Mol. Catal. A Chem. 411, 264 (2016).

    Article  CAS  Google Scholar 

  35. Y. Son, P.T.M. Bui, H. Lee, M.S. Akhtar, D.K. Shah, and O. Yang, A Rapid Synthesis of Mesoporous Mn2O3 Nanoparticles for Supercapacitor Applications. Coatings 9, 631 (2019).

    Article  CAS  Google Scholar 

  36. B.H. Toby, Chapter 4.7. Rietveld Refinement, in International Tables for Crystallography Volume H: Powder Diffraction (Wiley, 2019), pp. 465–472.

  37. B.H. Toby, R Factors in Rietveld Analysis: How Good is Good Enough? Powder Diffr. 21, 67 (2006).

    Article  CAS  Google Scholar 

  38. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louer, and P. Scardi, Rietveld Refinement Guidelines. J. Appl. Cryst. 32, 36 (1999).

    Article  CAS  Google Scholar 

  39. K. Kumari, R.N. Aljawfi, Y.S. Katharria, S. Dwivedi, K.H. Chae, R. Kumar, A. Alshoaibi, P.A. Alvi, S. Dalela, and S. Kumar, Study the Contribution of Surface Defects on the Structural, Electronic Structural, Magnetic, and Photocatalyst Properties of Fe: CeO2 Nanoparticles. J. Electron Spectros. Relat. Phenomena 235, 29 (2019).

    Article  CAS  Google Scholar 

  40. F. Jiao, A. Harrison, A.H. Hill, and P.G. Bruce, Mesoporous Mn2O3 and Mn3O4 with Crystalline Walls. Adv. Mater. 19, 4063 (2007).

    Article  CAS  Google Scholar 

  41. R. Najjar, R. Awad, and A.M. Abdel-Gaber, Physical Properties of Mn2O3 Nanoparticles Synthesized by Co-Precipitation Method at Different PH Values. J. Supercond. Nov. Magn. 32, 885 (2019).

    Article  CAS  Google Scholar 

  42. S. Kumar, K. Kumari, F.A. Alharthi, F. Ahmed, R. Naji, P.A. Alvi, R. Kumar, M. Hashim, and S. Dalela, Investigations of TM (Ni, Co) Doping on Structural, Optical and Magnetic Properties of CeO2 Nanoparticles. Vacuum 181, 109717 (2020).

    Article  CAS  Google Scholar 

  43. D. Nath and R. Das, Experimental (XRD) and Theoretical (DFT) Analysis for Understanding the Influence of SHI Irradiation on the Stacking Fault Energy in CdSe Nanocrystals. J. Alloys Compd. 879, 160456 (2021).

    Article  CAS  Google Scholar 

  44. A.J. Deotale and R.V. Nandedkar, Correlation Between Particle Size, Strain and Band Gap of Iron Oxide Nanoparticles. Mater. Today Proc. 3, 2069 (2016).

    Article  Google Scholar 

  45. I.M. Alibe, K.A. Matori, H.A.A. Sidek, Y. Yaakob, U. Rashid, A. Mustapha, M. Hafiz, M. Zaid, S. Nasir, and M. Mohammed, Effects of Polyvinylpyrrolidone on Structural and Optical Properties of Willemite Semiconductor Nanoparticles by Polymer Thermal Treatment Method. J. Therm. Anal. Calorim. 136, 2249 (2019).

    Article  CAS  Google Scholar 

  46. S. Dagar, A. Hooda, S. Khasa, and M. Malik, Rietveld Refinement, Dielectric and Magnetic Properties of NBT-Spinel Ferrite Composites. J. Alloys Compd. 806, 737 (2019).

    Article  CAS  Google Scholar 

  47. S. Bernardini, F. Bellatreccia, A.C. Municchia, G. Della Ventura, and A. Sodo, Raman Spectra of Natural Manganese Oxides. J Raman Spectrosc. 50, 1 (2019).

    Google Scholar 

  48. A.C. Ferrari, S.E. Rodil, and J. Robertson, Interpretation of Infrared and Raman Spectra of Amorphous Carbon Nitrides. Phys. Rev. B 67, 155306 (2003).

    Article  CAS  Google Scholar 

  49. C.M. Julien, M. Massot, and C. Poinsignon, Lattice Vibrations of Manganese Oxides Part I. Periodic Structures. Spectrochim. Acta Part A 60, 689 (2004).

    Article  CAS  Google Scholar 

  50. A.H.A.M. Videla, L. Osmieri, R.A.M. Esfahani, J. Zeng, C. Francia, and S. Specchia, The Use of C-MnO2 as Hybrid Precursor Support for a Pt/C-MnxO1+x Catalyst with Enhanced Activity for the Methanol Oxidation Reaction (MOR). Catalysts 5, 1399 (2015).

    Article  CAS  Google Scholar 

  51. F. Buciuman, F. Patcas, R. Craciun, and D.R.T. Zahn, Vibrational Spectroscopy of Bulk and Supported Manganese Oxides. Phys. Chem. Chem. Phys. 1, 185 (1999).

    Article  CAS  Google Scholar 

  52. L. Slavov, M.V. Abrashev, T. Merodiiska, C. Gelev, R.E. Vandenberghe, I. Markova-Deneva, and I. Nedkov, Raman Spectroscopy Investigation of Magnetite Nanoparticles in Ferrofluids. J. Magn. Magn. Mater. 322, 1904 (2010).

    Article  CAS  Google Scholar 

  53. L. Jayaselvan and C. Gnanasambandam, Structural, Optical and Phase Formation Modifications by Varying Precursor Temperature on Mn2O3 Nanoparticles Prepared by Microwave Assisted Precipitation. AIP Conf. Proc. 2311, 080008 (2020).

    Article  CAS  Google Scholar 

  54. A. Filtschew, K. Hofmann, and C. Hess, Ceria and Its Defect Structure : New Insights from a Combined Spectroscopic Approach. J. Phys. Chem. C 120, 6694–6703 (2016).

    Article  CAS  Google Scholar 

  55. A. Vijayamari, K. Sadayandi, S. Sagadevan, and P. Singh, A Study of Optical, Surface Morphological and Electrical Properties of Manganese Oxide Nanoparticles. J. Mater. Sci. Mater. Electron. 28, 2739 (2017).

    Article  CAS  Google Scholar 

  56. S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, and C.W. Nan, Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors. J. Phys. Chem. C 114, 2903 (2010).

    Article  CAS  Google Scholar 

  57. S. Kumar, M. Sharma, R.R.N., K.H. Chae, R. Kumar, S. Dalela, A. Alshoaibi, F. Ahmed, and P.A. Alvi, Tailoring the Structural, Electronic Structure and Optical Properties of Fe: SnO2 Nanoparticles, J. Electron Spectros. Relat. Phenomena 240, 146934 (2020).

  58. M. Singh, M. Goyal, and K. Devlal, Size and Shape Effects on the Band Gap of Semiconductor Compound Nanomaterials. J. Taibah Univ. Sci. 12, 1 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

Support for this project comes from the National Research Foundation of Korea grant funded by the Korean government (No. 2018R1D1A1B07046937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bon-Heun Koo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Kumar, S., Huh, SH. et al. Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties. J. Electron. Mater. 51, 5842–5856 (2022). https://doi.org/10.1007/s11664-022-09804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09804-3

Keywords

Navigation