Skip to main content
Log in

Oxygen Vacancy-Induced Anomalous Hall Effect in a Nominally Non-magnetic Oxide

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The anomalous Hall effect, a hallmark of broken time-reversal symmetry and spin–orbit coupling, is frequently observed in magnetically polarized systems. However, its realization in nominally non-magnetic systems remains elusive. Here, we report on the observation of the anomalous Hall effect in nominally non-magnetic KTaO3. Anomalous Hall effect emerges in reduced KTaO3 and shows an extrinsic to intrinsic crossover. A paramagnetic behavior is observed in reduced samples and confirmed using first principles calculations. The observed anomalous Hall effect follows the oxygen vacancy-induced magnetization response, suggesting that the localized magnetic moments of the oxygen vacancies scatter conduction electrons asymmetrically and give rise to the anomalous Hall effect. The anomalous Hall conductivity is found to be insensitive to the scattering rate in the low temperature limit (T < 5 K), implying that the Berry curvature of the electrons on the Fermi surface controls the anomalous Hall effect. Our observations provide a detailed picture of many-body interactions, which trigger the anomalous Hall effect in a non-magnetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. R. Karplus and J.M. Luttinger, Phys. Rev. 95, 1154 (1954).

    Article  Google Scholar 

  2. F.D.M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).

    Article  CAS  Google Scholar 

  3. M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003).

    Article  Google Scholar 

  4. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald and N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

    Article  Google Scholar 

  5. T. Jungwirth, Q. Niu and A.H. MacDonald, Phys. Rev. Lett. 88, 4 (2002).

    Article  Google Scholar 

  6. M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002).

    Article  CAS  Google Scholar 

  7. J. Ye, Y.B. Kim, A.J. Millis, B.I. Shraiman, P. Majumdar and Z. Teanovic, Phys. Rev. Lett. 83, 3737 (1999).

    Article  CAS  Google Scholar 

  8. K. Ahadi, L. Galletti and S. Stemmer, Appl. Phys. Lett. 111, (2017).

  9. Z. Fang, N. Nagaosa, K.S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura and K. Terakura, Science (80-. ). 302, 92 (2003).

  10. K.S. Takahashi, M. Onoda, M. Kawasaki, N. Nagaosa and Y. Tokura, Phys. Rev. Lett. 103, 057204 (2009).

    Article  CAS  Google Scholar 

  11. K. Ahadi, Z. Gui, Z. Porter, J.W. Lynn, Z. Xu, S.D. Wilson, A. Janotti and S. Stemmer, APL Mater. 6, 056105 (2018).

    Article  Google Scholar 

  12. M. Serlin, C.L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents and A.F. Young, Science (80-. ). 367, 900 (2020).

  13. Y. Deng, Y. Yu, M.Z. Shi, Z. Guo, Z. Xu, J. Wang, X.H. Chen and Y. Zhang, Science (80). 367, 895 (2020).

  14. Shitade and N. Nagaosa, J. Phys. Soc. Jpn. 81, 083704 (2012).

  15. Lin and A.A. Demkov, Phys. Rev. Lett. 111, (2013).

  16. I.R. Shein and A.L. Ivanovskii, Phys. Lett. A 371, 155 (2007).

    Article  CAS  Google Scholar 

  17. I.S. Elfimov, S. Yunoki and G.A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).

    Article  CAS  Google Scholar 

  18. W.D. Rice, P. Ambwani, M. Bombeck, J.D. Thompson, G. Haugstad, C. Leighton and S.A. Crooker, Nat. Mater. 2014 135 13, 481 (2014).

  19. J.A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H.Y. Hwang and K.A. Moler, Nat. Phys. 2011 710 7, 767 (2011).

  20. P.B. Marshall, K. Ahadi, H. Kim and S. Stemmer, Phys. Rev. B 97, 155160 (2018).

    Article  CAS  Google Scholar 

  21. T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa and Y. Tokura, Phys. Rev. Lett. 99, 086602 (2007).

    Article  CAS  Google Scholar 

  22. S. Onoda, N. Sugimoto and N. Nagaosa, Phys. Rev. B 77, 165103 (2008).

    Article  Google Scholar 

  23. M.M.H. Polash, S. Yalameha, H. Zhou, K. Ahadi, Z. Nourbakhsh and D. Vashaee, Mater. Sci. Eng. R Rep. 145, 100620 (2021).

    Article  Google Scholar 

  24. A.R. Akbarzadeh, L. Bellaiche, K. Leung, J. Íñiguez and D. Vanderbilt, Phys. Rev. B Condens. Matter Mater. Phys. 70, 054103 (2004).

  25. G.E. Jellison, I. Paulauskas, L.A. Boatner and D.J. Singh, Phys. Rev. B Condens. Matter Mater. Phys. 74, 155130 (2006).

  26. B. Himmetoglu and A. Janotti, J. Phys. Condens. Matter 28, 065502 (2016).

    Article  Google Scholar 

  27. S. Salmani-Rezaie, K. Ahadi and S. Stemmer, Nano Lett. 20, 6542 (2020).

    Article  CAS  Google Scholar 

  28. F.Y. Bruno, S. McKeown Walker, S. Riccò, A. de la Torre, Z. Wang, A. Tamai, T.K. Kim, M. Hoesch, M.S. Bahramy and F. Baumberger, Adv. Electron. Mater. 5, 1800860 (2019).

  29. S.K. Ojha, S.K. Gogoi, M.M. Patidar, R.K. Patel, P. Mandal, S. Kumar, R. Venkatesh, V. Ganesan, M. Jain and S. Middey, Adv. Quantum Technol. 3, 2000021 (2020).

    Article  CAS  Google Scholar 

  30. S.K. Ojha, S.K. Gogoi, P. Mandal, S.D. Kaushik, J.W. Freeland, M. Jain and S. Middey, Phys. Rev. B 103, 085120 (2021).

    Article  CAS  Google Scholar 

  31. A.B. Pippard, Magnetotersistance in Metals, 253 (1989).

  32. J. Kondo, Prog. Theor. Phys. 27, 772 (1962).

    Article  CAS  Google Scholar 

  33. J.O. Fusayoshi and F. Hidetoshi, 53, 2640 (2013). https://doi.org/10.1143/JPSJ.53.2640

  34. A.H. Al-Tawhid, D.P. Kumah and K. Ahadi, Appl. Phys. Lett. 118, 192905 (2021).

    Article  CAS  Google Scholar 

  35. N. Wadehra, R. Tomar, R.M. Varma, R.K. Gopal, Y. Singh, S. Dattagupta and S. Chakraverty, Nat. Commun. 11, 1 (2020).

    Article  Google Scholar 

  36. H. Nakamura and T. Kimura, Phys. Rev. B Condens. Matter Mater. Phys. 80, (2009).

  37. K. Ahadi, H. Kim and S. Stemmer, APL Mater. 6, 056102 (2018).

    Article  Google Scholar 

  38. K. Ahadi, X. Lu, S. Salmani-Rezaie, P.B. Marshall, J.M. Rondinelli and S. Stemmer, Phys. Rev. B 99, 041106 (2019).

    Article  CAS  Google Scholar 

  39. Z. Porter, R.F. Need, K. Ahadi, Y. Zhao, Z. Xu, B.J. Kirby, J.W. Lynn, S. Stemmer and S.D. Wilson, Phys. Rev. Mater. 4, 054411 (2020).

    Article  CAS  Google Scholar 

  40. B. Giovannini, J. Low Temp. Phys. 11, 489 (1973).

    Article  Google Scholar 

  41. J.N. Baker, P.C. Bowes, J.S. Harris and D.L. Irving, MRS Commun. 2019 93 9, 839 (2019).

  42. J.N. Baker, P.C. Bowes, J.S. Harris and D.L. Irving, J. Appl. Phys. 124, 114101 (2018).

    Article  Google Scholar 

  43. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    Article  CAS  Google Scholar 

  44. D. Maryenko, A.S. Mishchenko, M.S. Bahramy, A. Ernst, J. Falson, Y. Kozuka, A. Tsukazaki, N. Nagaosa and M. Kawasaki, Nat. Commun. 2017 81 8, 1 (2017).

  45. L. Smejkal, A.H. MacDonald, J. Sinova, S. Nakatsuji and T. Jungwirth, ArXiv 2107, 03321 (2021).

    Google Scholar 

Download references

Acknowledgments

NCSU team was supported by the U.S. National Science Foundation under Grant No. NSF DMR-1751455. The authors acknowledge use of the SQUID and PPMS facility in the Department of Materials Science and Engineering at North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Ahadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1182 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Tawhid, A.H., Kanter, J., Hatefipour, M. et al. Oxygen Vacancy-Induced Anomalous Hall Effect in a Nominally Non-magnetic Oxide. J. Electron. Mater. 51, 7073–7077 (2022). https://doi.org/10.1007/s11664-022-09941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09941-9

Keywords

Navigation