Skip to main content
Log in

Argon Implantation in Tetrahedral Amorphous Carbon Deposited by Filtered Cathodic Vacuum Arc

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The implantation of argon in tetrahedral amorphous carbon (ta-C), deposited by the filtered cathodic vacuum arc technique and concurrently bombarded with argon ions (Ar+), is investigated in this study. The ta-C films were prepared with a 5-ms DC-pulsed arc, a current of 190 A, and a frequency of 3 Hz, and they were deposited on a ground substrate holder. The argon atoms were implanted into the film by simultaneously bombarding the films with a beam of Ar+ in the 0-180 eV energy range. The concentration of argon, determined by Rutherford backscattering spectroscopy, was investigated as a function of the Ar+ energy. Raman scattering spectroscopy was used to investigate the structure of the films. The stress of the films depends on the Ar+ energy and reduces significantly as a function of the annealing temperature. A study of argon effusion, ranging from room temperature up to 1000 °C, shows that the argon atoms evolve from the films at different temperatures depending on the Ar+ energy. Scanning electron microscopy revealed the formation of bubbles after argon effusion. It was observed that the structural transformations that promote the relaxation of the carbon matrix and the argon effusion are different from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I.I. Aksenov, S.I. Vakula, V.G. Padalka, V.E. Strelnitskii, and V.M. Khoroshikh, A Highly Effective Source of Pure Carbon Plasmas, Zh. Tekh. Fiz., 1980, 50, p 2000–2004

    CAS  Google Scholar 

  2. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, and J. Koskinen, Properties of Filtered-Ion-Beam-Deposited Diamondlike Carbon as a Function of Ion Energy, Phys. Rev. B, 1993, 48, p 4777–4782

    Article  CAS  Google Scholar 

  3. D.R. McKenzie, D. Muller, and B.A. Pailthorpe, Compressive-Stress-Induced Formation of Thin-Film Tetrahedral Amorphous Carbon, Phys. Rev. Lett., 1991, 67(6), p 773–776

    Article  CAS  Google Scholar 

  4. R. Lossy, D.L. Pappas, R.A. Roy, J.J. Cuomo, and V.M. Sura, Filtered Arc Deposition of Amorphous Diamond, Appl. Phys. Lett., 1992, 61(2), p 171–173

    Article  CAS  Google Scholar 

  5. A. Anders, S. Anders, I.G. Brown, M.R. Dickinson, and R.A. MacGill, Metal Plasma Immersion Ion Implantation and Deposition Using Vacuum Arc Plasma Sources, J. Vac. Sci. Technol. B, 1994, 12(2), p 815–820

    Article  CAS  Google Scholar 

  6. J. Robertson, Diamond-Like Amorphous Carbon, Mater. Sci. Eng. R Rep., 2002, 37, p 129–281

    Article  Google Scholar 

  7. H.-L. Leo, S.R. Chapman, and R.M. Crone, Slider/Disk Interaction During the Landing Process, J. Tribol., 1995, 117(1), p 119–123

    Article  Google Scholar 

  8. F.J. Clough, W.I. Milne, B. Kleinsorge, J. Robertson, G.A.J. Amaratunga, and B.N. Roy, Tetrahedrally Bonded Amorphous Carbon (ta-C) Thin Films Transistor, Electron. Lett., 1996, 32, p 498–499

    Article  CAS  Google Scholar 

  9. R.K. Roy and K.-R. Lee, Biomedical Applications of Diamond-Like Carbon Coatings: A Review, J. Biomed. Mater. Res. Part B, 2007, 83, p 72–84

    Google Scholar 

  10. L. Guoqiang, B. Xiao, D. Chuang, and W. Lishi, Substrate Temperature Calculation for Pulsed Bias Arc Ion Plating, Surf. Coat. Technol., 2005, 194, p 325–329

    Article  Google Scholar 

  11. D. Sheeja, B.K. Tay, L.J. Yu, S.P. Lau, J.Y. Sze, and C.K. Cheong, Effect of Frequency and Pulse Width on the Properties of ta:C Films Prepared by FCVA Together with Substrate Pulse Biasing, Thin Solid Films, 2002, 420–421, p 62–69

    Article  Google Scholar 

  12. Md.A. Rahman, P. Maguire, S.S. Roy, R. McCann, F. McKavanagh, and J.A. McLaughlin, Sp3 Content in ta-C Films vs Pulse Bias Width to the Substrate: A Correlative Structural Analysis, Diam. Relat. Mater., 2009, 18, p 1343–1347

    Article  CAS  Google Scholar 

  13. D. Sheeja, B.K. Tay, J.Y. Sze, L.J. Yu, and S.P. Lau, A Comparative Study Between Pure and Al-Containing Amorphous Carbon Films Prepared by FCVA Technique Together with High Substrate Pulse Biasing, Diam. Relat. Mater., 2003, 12, p 2032–2036

    Article  CAS  Google Scholar 

  14. D.F. Franceschini, C.A. Achete, and F.L. Freire, Internal Stress Reduction by Nitrogen Incorporation in Hard Amorphous Carbon Thin Films, Appl. Phys. Lett., 1992, 60(26), p 3229–3231

    Article  CAS  Google Scholar 

  15. D.H. Lee, S. Fayeulle, K.C. Walter, and M. Nastasi, Internal Stress Reduction in Diamond Like Carbon Thin Films by Ion Irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B, 1999, 148, p 216–220

    Article  CAS  Google Scholar 

  16. R.G. Lacerda, P. Hammer, C.M. Lepienski, F. Alvarez, and F.C. Marques, Hard Graphitic-Like Amorphous Carbon Films with High Stress and Local Microscopic Density, J. Vac. Sci. Technol. A, 2001, 19, p 971–975

    Article  CAS  Google Scholar 

  17. R.G. Lacerda, M.C. dos Santos, L.R. Tessler, P. Hammer, F. Alvarez, and F.C. Marques, Pressure-Induced Physical Changes of Noble Gases Implanted in Highly Stressed Amorphous Carbon Films, Phys. Rev. B, 2003, 68, p 054104(1–7)

    Google Scholar 

  18. T.-Y. Kim, C.S. Lee, Y.J. Lee, K.H. Chae, and K.H. Oh, Reduction of the Residual Compressive Stress of Tetrahedral Amorphous Carbon Film by Ar Background Gas During the Filtered Vacuum Arc Process, J. Appl. Phys., 2007, 101, p 023504(1–5)

    Google Scholar 

  19. L.K. Cheah, X. Shi, B.K. Tay, and E. Liu, Modification of Tetrahedral Amorphous Carbon Film by Concurrent Ar Ion Bombardment During Deposition, Surf. Coat. Technol., 1998, 105, p 91–96

    Article  CAS  Google Scholar 

  20. E. Byon and A. Anders, Ion Energy Distribution Functions of Vacuum Arc Plasmas, J. Appl. Phys., 2003, 93(4), p 1899–1906

    Article  CAS  Google Scholar 

  21. D. Liu, G. Benstetter, E. Lodermeier, and J. Vancea, Influence of the Incident Angle of Energetic Carbon Ions on the Properties of Tetrahedral Amorphous Carbon(ta-C) Films, J. Vac. Sci. Technol. A, 2003, 21(5), p 1665–1670

    Article  CAS  Google Scholar 

  22. F.X. Liu, K.L. Yao, and Z.-L. Liu, Substrate Tilting Effect on Structure of Tetrahedral Amorphous Carbon Films by Raman Spectroscopy, Surf. Coat. Technol., 2007, 201, p 7235–7240

    Article  CAS  Google Scholar 

  23. M.M. de Lima, Jr., R.G. Lacerda, J. Vilcarromero, and F.C. Marques, Coefficient of Thermal Expansion and Elastic Modulus of Thin Films, J. Appl. Phys., 1999, 86, p 4936–4942

    Article  Google Scholar 

  24. P.F. Barbieri, R. Landers, M.H. de Oliveira, F. Alvarez, and F.C. Marques, Electronic Structure of Xenon Implanted with Low Energy in Amorphous Silicon, J. Electron Spectrosc. Relat. Phenom., 2007, 156–158, p 409–412

    Article  Google Scholar 

  25. C.A. Davis, A Simple Model for the Formation of Compressive Stress in Thin Films by Ion Bombardment, Thin Solid Films, 1993, 226, p 30–34

    Article  CAS  Google Scholar 

  26. J. Robertson, Deposition Mechanisms for Promoting sp3 Bonding in Diamond-Like Carbon, Diam. Relat. Mater., 1993, 2, p 984–989

    Article  CAS  Google Scholar 

  27. A.C. Ferrari and J. Robertson, Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B, 2000, 61(20), p 14095–14107

    Article  CAS  Google Scholar 

  28. G. Adamopoulos, K.W.R. Gilkes, J. Robertson, N.M.J. Conway, B.Y. Kleinsorge, A. Buckley, and D.N. Batchelder, Ultraviolet Raman Characterization of Diamond-Like Carbon Films, Diam. Relat. Mater., 1999, 8, p 541–544

    Article  CAS  Google Scholar 

  29. B. Kleinsorge, S.E. Rodil, G. Adamopoulos, J. Robertson, D. Grambole, and W. Fukarek, Hydrogen and Disorder in Diamond-Like Carbon, Diam. Relat. Mater., 2001, 10, p 965–969

    Article  CAS  Google Scholar 

  30. M. Chhowalla, A.C. Ferrari, J. Robertson, and G.A.J. Amaratunga, Evolution of sp2 Bonding with Deposition Temperature in Tetrahedral Amorphous Carbon Studied by Raman Spectroscopy, Appl. Phys. Lett., 2000, 76(11), p 1419–1421

    Article  CAS  Google Scholar 

  31. A.C. Ferrari, S.E. Rodil, and J. Robertson, Interpretation of Infrared and Raman Spectra of Amorphous Carbon Nitrides, Phys. Rev. B, 2003, 67, p 155306(1–20)

    Google Scholar 

  32. C. Casiraghi, A.C. Ferrari, J. Robertson, R. Ohr, M.V. Gradowski, and D. Schneider, Ultra-Thin Carbon Layer for High Density Magnetic Storage Devices, Diam. Relat. Mater., 2004, 13, p 1480–1485

    Article  CAS  Google Scholar 

  33. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, and R. Saito, Studying Disorder in Graphite-Based Systems by Raman Spectroscopy, Phys. Chem. Chem. Phys., 2007, 9, p 1276–1291

    Article  CAS  Google Scholar 

  34. L.G. Cançado, A. Jorio, and M.A. Pimenta, Measuring the absolute Raman Cross Section of Nanographites as a Function of Laser Energy and Crystallite Size, Phys. Rev. B, 2007, 76, p 064304(1–7)

    Google Scholar 

  35. S. Reich and C. Thomsen, Raman Spectroscopy of Graphite, Philos. Trans. R. Soc. A, 2004, 362, p 2271–2288

    Article  CAS  Google Scholar 

  36. C. Castiglioni, F. Negri, M. Rigolio, and G. Zerbi, Raman Activation in Disordered Graphites of the A’1 Symmetry Forbidden k ≠ 0 Phonon: The Origin of the D Line, J. Chem. Phys., 2001, 115, p 3769–3778

    Article  CAS  Google Scholar 

  37. G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A Reconsideration of the Relationship Between the Crystallite Size La of Carbons Determined by X-Ray Diffraction and Raman Spectroscopy, Carbon, 2006, 44, p 3239–3246

    Article  CAS  Google Scholar 

  38. A.C. Ferrari and J. Robertson, Raman Spectroscopy of Amorphous, Nanostructured, Diamond-Like Carbon and Nanodiamond, Philos. Trans. R. Soc. A, 2004, 362, p 2477–2512

    Article  CAS  Google Scholar 

  39. K.W.R. Gilkes, S. Prawer, K.W. Nugent, J. Robertson, H.S. Sands, Y. Lifshitz, and X. Shi, Direct Quantitative Detection of the sp3 Bonding in Diamond-Like Carbon Films Using Ultraviolet and Visible Raman Spectroscopy, J. Appl. Phys., 2000, 87, p 7283–7289

    Article  CAS  Google Scholar 

  40. F.C. Tai, S.C. Lee, J. Chen, C. Wei, and S.H. Chang, Multipeak Fitting Analysis of Raman Spectra on DLCH Film, J. Raman Spectrosc., 2009, 40, p 1055–1059

    Article  CAS  Google Scholar 

  41. A.C. Ferrari and J. Robertson, Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon, Phys. Rev. B, 2001, 64, p 075414(1–13)

    Google Scholar 

  42. A.C. Ferrari, Determination of Bonding in Diamond-Like Carbon by Raman Spectroscopy, Diam. Relat. Mater., 2002, 11, p 1053–1061

    Article  CAS  Google Scholar 

  43. M.A. Tamor, J.A. Haire, C.H. Wu, and K.C. Hass, Correlation of the Optical Gaps and Raman Spectra of Hydrogenated Amorphous Carbon Films, Appl. Phys. Lett., 1989, 54(2), p 123–125

    Article  CAS  Google Scholar 

  44. M.V. Gradowski, A.C. Ferrari, R. Ohr, B. Jacoby, H. Hilgers, H.-H. Schneider, and H. Adrian, Resonant Raman Characterization of Ultra-Thin Nano-Protective Carbon Layers for Magnetic Storage Devices, Surf. Coat. Technol., 2003, 174, p 246–252

    Article  Google Scholar 

  45. M.C. Polo, J.L. Andujar, A. Hart, J. Robertson, and W.I. Milne, Preparation of Tetrahedral Amorphous Carbon Films by Filtered Cathodic Vacuum Arc Deposition, Diam. Relat. Mater., 2000, 9, p 663–667

    Article  CAS  Google Scholar 

  46. C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, and J. Robertson, Bonding in Hydrogenated Diamond-Like Carbon by Raman Spectroscopy, Diam. Relat. Mater., 2005, 14, p 1098–1102

    Article  CAS  Google Scholar 

  47. N. Akita, Y. Konishi, S. Ogura, M. Imamura, Y.H. Hu, and X. Shi, Comparison of Deposition Methods for Ultra Thin DLC Overcoat Film for MR Head, Diam. Relat. Mater., 2001, 10, p 1017–1023

    Article  CAS  Google Scholar 

  48. J. Robertson and E.P. O’Reilly, Electronic and Atomic Structure of Amorphous Carbon, Phys. Rev. B, 1987, 35, p 2946–2957

    Article  CAS  Google Scholar 

  49. F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 1970, 53, p 1126–1130

    Article  CAS  Google Scholar 

  50. J.D. Hunn, S.P. Withrow, C.W. White, and D.M. Hembree, Jr., Raman Scattering from MeV-Ion Implanted Diamond, Phys. Rev. B, 1995, 52, p 8106–8111

    Article  CAS  Google Scholar 

  51. K.W.R. Gilkes, H.S. Sands, D.N. Batchelder, J. Robertson, and W.I. Milne, Direct Observation of sp3 Bonding in Tetrahedral Amorphous Carbon Using Ultraviolet Raman Spectroscopy, Appl. Phys. Lett., 1997, 70(15), p 1980–1982

    Article  CAS  Google Scholar 

  52. M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis, G.A.J. Amaratunga, and W.I. Milne, Influence of Ion Energy and Substrate Temperature on the Optical and Electronic Properties of Tetrahedral Amorphous Carbon (ta-C) Films, J. Appl. Phys., 1997, 81, p 139–145

    Article  CAS  Google Scholar 

  53. J.P. Sullivan, T.A. Friedmann, and A.G. Baca, Stress Relaxation and Thermal Evolution of Film Properties in Amorphous Carbon, J. Electron. Mater., 1997, 26, p 1021–1029

    Article  CAS  Google Scholar 

  54. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, and J. Robertson, Stress Reduction and Bond Stability During Thermal Annealing of Tetrahedral Amorphous Carbon, J. Appl. Phys., 1999, 85, p 7191–7197

    Article  CAS  Google Scholar 

  55. Z. Jiaqi, H. Jiecai, M. Songhe, L. Jia, J. Chunzhu, L. Shuping, Z. Yuebing, and T. Bengkang, Temperature Sensibility of Amorphous Diamond Films Prepared by Filtered Arc, Diam. Relat. Mater., 2007, 16, p 558–561

    Article  Google Scholar 

  56. B.K. Tay, X. Shi, E.J. Liu, H.S. Tan, and L.K. Cheah, Effects of Substrate Temperature on the Properties of Tetrahedral Amorphous Carbon Films, Thin Solid Films, 1999, 346, p 155–161

    Article  CAS  Google Scholar 

  57. A.C. Ferrari, S.E. Rodil, J. Robertson, and W.I. Milne, Is Stress Necessary to Stabilise sp3 Bonding in Diamond-Like Carbon?, Diam. Relat. Mater., 2002, 11, p 994–999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to M. H. de Oliveira Jr. for his contribution on the development of the FCVA system and several characterizations. The authors also thank Prof. M. C. B. S. Salvadori, M. M. de Lima Jr., A. Cross, and A. Cantarero for their contribution to many aspects of this study. This study was financed by FAPESP, CAPES, CNPq, and INES. The authors also thank the LAMFI/USP and LME/LNNano for the measurement of RBS and technical support during electron microscopy work, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, F.C., Viana, G.A., Motta, E.F. et al. Argon Implantation in Tetrahedral Amorphous Carbon Deposited by Filtered Cathodic Vacuum Arc. J. of Materi Eng and Perform 22, 1396–1404 (2013). https://doi.org/10.1007/s11665-012-0401-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0401-2

Keywords

Navigation