Skip to main content
Log in

Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Zhang, M. Klasky, and B.C. Letellier, The Aluminum Chemistry and Corrosion in Alkaline Solutions, J. Nucl. Mater., 2009, 384, p 175–189

    Article  CAS  Google Scholar 

  2. B. Zhang, Y. Li, and F. Wang, Electrochemical Behavior of Microcrystalline Aluminum in Neutral Fluoride Containing Solutions, Corros. Sci., 2009, 51, p 268–275

    Article  CAS  Google Scholar 

  3. S. Sadeghipour, J. Ghaderian, and M.A. Wahid, Advances in Aluminum Powder Usage as an Energetic Material and Applications for Rocket Propellant, AIP Conf. Proc., 2012, 1440, p 100–108

    CAS  Google Scholar 

  4. R.E. Sanders, Jr., and D.M. Farnsworth, Trends in Aluminum Materials Usage for Electronics, JOM, 2011, 63, p 12–15

    Article  Google Scholar 

  5. C. Vargel, Corrosion of Aluminium, Elsevier, Oxford, 2004

    Google Scholar 

  6. G.S. Frankel, Pitting Corrosion of Metals: A Review of the Critical Factors, J. Electrochem. Soc., 1998, 145, p 2186–2198

    Article  CAS  Google Scholar 

  7. E. McCafferty, Sequence of Steps in the Pitting of Aluminum by Chloride Ions, Corros. Sci., 2003, 45, p 1421–1438

    Article  CAS  Google Scholar 

  8. W.M. Carroll, M. Murphy, and C.B. Berslin, The Corrosion/Dissolution Behaviour of Aluminium in Solutions Containing Both Chloride and Fluoride Ions, Corros. Sci., 1993, 34, p 1495–1507

    Article  CAS  Google Scholar 

  9. E.J. Lee and S.I. Pyun, The Effect of Oxide Chemistry on the Passivity of Aluminum Surfaces, Corros. Sci., 1995, 37, p 157–168

    Article  CAS  Google Scholar 

  10. P.J. Eng, T.P. Trainor, G.E. Brown, G.A. Waychunas, M. Newville, S.R. Sutton, and M.L. Rivers, Structure of the Hydrated α-Al2O3 (0001) Surface, Science, 2000, 288, p 1029–1033

    Article  CAS  Google Scholar 

  11. T.H. Nguyen and R.T. Foley, The Chemical Nature of Aluminum Corrosion, J. Electrochem. Soc., 1982, 129, p 27–32

    Article  CAS  Google Scholar 

  12. M. Lashgari and A.M. Malek, Fundamental Studies of Aluminum Corrosion in Acidic and Basic Environments: Theoretical Predictions and Experimental Observations, Electrochim. Acta, 2010, 55, p 5253–5257

    Article  CAS  Google Scholar 

  13. M. Lashgari, Theoretical Challenges in Understanding the Inhibition Mechanism of Aluminum Corrosion in Basic Media in the Presence of Some p-Phenol Derivatives, Electrochim. Acta, 2011, 56, p 3322–3327

    Article  CAS  Google Scholar 

  14. E.M. Sherif and S.-M. Park, Effects of 1,4-Naphthoquinone on Aluminum Corrosion in 0.50 M Sodium Chloride Solutions, Electrochim. Acta, 2006, 51, p 1313–1321

    Article  CAS  Google Scholar 

  15. M. Lashgari, M.R. Arshadi, Gh.A. Parsafar, and V.S. Sastri, Cluster/Polarized Continuum Models for Density Functional Theory Investigations of Benzimidazole Corrosion Inhibitors at Metal/Solution Interface, Corrosion (Houston), 2006, 62, p 199–206

    Article  CAS  Google Scholar 

  16. M. Lashgari, M.R. Arshadi, and V.S. Sastri, Quantum Electrochemical Approaches to Corrosion Inhibition Properties of Some Aniline Derivatives in Acidic Media, J. Electrochem. Soc., 2007, 154, p P93–P100

    Article  CAS  Google Scholar 

  17. J.-L. Quan, B.-T. Teng, X.-D. Wen, Y. Zhao, R. Liu, and M.-F. Luo, Hydrogen Fluoride Adsorption and Reaction on the α-Al2O3(0001) Surface: A Density Functional Theory Study, J. Chem. Phys., 2012, 136, p 114701–114708

    Article  Google Scholar 

  18. V.A. Ranea, I. Carmichael, and W.F. Schneider, DFT Investigation of Intermediate Steps in the Hydrolysis of α-Al2O3(0001), J. Phys. Chem. C, 2009, 113, p 2149–2158

    Article  CAS  Google Scholar 

  19. P. Gamallo and R. Sayós, A Density Functional Theory Study of Atomic Oxygen and Nitrogen Adsorption Over α-Alumina (0001), Phys. Chem. Chem. Phys., 2007, 9, p 5112–5120

    Article  CAS  Google Scholar 

  20. Ø. Borck, P. Hyldgaard, and E. Schröder, Adsorption of Methylamine on α-Al2O3(0001) and α-Cr2O3(0001): Density Functional Theory, Phys. Rev. B, 2007, 75, p 035403–035407

    Article  Google Scholar 

  21. V. Shapovalov and T.N. Truong, Ab Initio Study of Water Adsorption on α-Al2O3 (0001) Crystal Surface, J. Phys. Chem. B, 2000, 104, p 9859–9863

    Article  CAS  Google Scholar 

  22. J.M. Wittbrodt, W.L. Hase, and H.B. Schlegel, Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) α-Aluminum Oxide Surface, J. Phys. Chem. B, 1998, 102, p 6539–6548

    Article  CAS  Google Scholar 

  23. M.R. Arshadi, M. Lashgari, and Gh.A. Parsafar, Cluster Approach to Corrosion Inhibition Problems: Interaction Studies, Mater. Chem. Phys., 2004, 86, p 311–314

    Article  CAS  Google Scholar 

  24. B.J. Lynch and D.G. Truhlar, Small Basis Sets for Calculations of Barrier Heights, Energies of Reaction, Electron Affinities, Geometries, and Dipole Moments, Theor. Chem. Acc., 2004, 111, p 335–344

    Article  CAS  Google Scholar 

  25. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.02, Inc., Wallingford, CT, 2009

  26. H. Walters, Design of Corrosion Inhibitors: Use of the Hard and Soft Acid-Base (HSAB) Theory, J. Chem. Educ., 1991, 68, p 29–30

    Article  CAS  Google Scholar 

  27. E.S. Böes, P.R. Livotto, and H. Stassen, Solvation of Monovalent Anions in Acetonitrile and N,N-Dimethylformamide: Parameterization of the IEF-PCM Model, Chem. Phys., 2006, 331, p 142–158

    Article  Google Scholar 

  28. J.R. Galvele, Transport Processes and the Mechanism of Pitting of Metals, J. Electrochem. Soc., 1976, 123, p 464–474

    Article  CAS  Google Scholar 

  29. A.S. Mikhailov, J.R. Scully, and J.L. Hudson, Nonequilibrium Collective Phenomena in the Onset of Pitting Corrosion, Surf. Sci., 2009, 603, p 1912–1921

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Lashgari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashgari, M., Kianpour, E. & Mohammadi, E. Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence. J. of Materi Eng and Perform 22, 3620–3625 (2013). https://doi.org/10.1007/s11665-013-0669-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0669-x

Keywords

Navigation