Skip to main content
Log in

Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell–semiconductor hybrid to monitor the proper coordination. The live–dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-P. Phan, H.-H. Cheng, T. Dinh, B. Wood, T.-K. Nguyen, F. Mu, H. Kamble, R. Vadivelu, G. Walker, L. Hold, A. Iacopi, B. Haylock, D.V. Dao, M. Lobino, T. Suga, and N.-T. Nguyen, Single-Crystalline 3C-SiC Anodically Bonded onto Glass: An Excellent Platform for High-Temperature Electronics and Bioapplications, ACS Appl. Mater. Interfaces, 2017, 33, p 27365–27371

    Article  Google Scholar 

  2. A. Mzyk, R. Major, J.M. Lackner, F. Bruckert, and B. Major, Cytotoxicity Control of SiC Nanoparticles Introduced into Polyelectrolyte Multilayer Films, RSC Adv., 2014, 4, p 31948

    Article  Google Scholar 

  3. D. Beke, Z. Szekrényes, D. Pálfi, G. Róna, I. Balogh, P.A. Maák, G. Katona, Z. Czigány, K. Kamarás, B. Rózsa, L. Buday, B. Vértessy, and A. Gali, Silicon Carbide Quantum Dots for Bioimaging, J. Mater. Res., 2013, 28, p 205–209

    Article  Google Scholar 

  4. W. Xie, Q. Xie, M. Jin, X. Huang, X. Zhang, Z. Shao, and G. Wen, The β-SiC Nanowires (∼ 100 nm) Induce Apoptosis Via Oxidative Stress in Mouse Osteoblastic Cell Line MC3T3-E1, BioMed Res. Int., 2014, 2014, p 312901. https://doi.org/10.1155/2014/312901

    Google Scholar 

  5. S. Barillet, M.-L. Jugan, M. Laye, Y. Leconte, N. Herlin-Boime, C. Reynaud, and M. Carrière, In Vitro Evaluation of SiC Nanoparticles Impact on A549 Pulmonary Cells: Cyto-Genotoxicity and Oxidative Stress, Toxicol. Lett., 2010, 198, p 324–330

    Article  Google Scholar 

  6. J. Bruch, B. Rehn, G.D. Arnould, J. Efskind, G. Roderer, and P. Sebastian, Toxicological Investigations on the Respirable Fraction of Silicon Carbide Grain Products by the In Vitro Vector Model, Inhal. Toxicol., 2014, 26(5), p 278–288

    Article  Google Scholar 

  7. B.P. Swain, Human Serum Albumin (HSA) Adsorption onto a-SiC:H Thin Films Deposited by Hot Wire Chemical Vapor Deposition, Appl. Surf. Sci., 2006, 253(4), p 2310–2314

    Article  Google Scholar 

  8. B.P. Swain and D.K. Pattanayak, Simulated Body Fluid (SBF) Adsorption onto a-SiC:H Thin Films Deposited by Hot Wire Chemical Vapor Deposition (HWCVD), Mater. Lett., 2008, 62(20), p 3484–3486

    Article  Google Scholar 

  9. M. Joshi, S. Singh, B.P. Swain, S. Patil, R.O. Dusane, V.R. Rao, and S. Mukherjee, Anhydrous Silanization and Antibody Immobilization on Hotwire CVD Deposited Silicon Oxynitride Films, IEEE Indicon, 2004, 2004, p 538–541

    Google Scholar 

  10. B.P. Swain and R. Dusane, Effect of Substrate Temperature in a-SiC:H Films Deposited by HWCVD, Mater. Lett., 2007, 61, p 4731–4734

    Article  Google Scholar 

  11. B.P. Swain and R.O. Dusane, Effect of Filament Temperature on HWCVD Deposited a-SiC:H Films, Mater. Lett., 2006, 60, p 2915–2919

    Article  Google Scholar 

  12. B.P. Swain and R.O. Dusane, Multiphase Structure of Hydrogen Diluted a-SiC:H Deposited by HWCVD, Mater. Chem. Phys., 2006, 99, p 240–246

    Article  Google Scholar 

  13. C. Donnet, J. Fontaine, A. Grill, and T.L. Monge, The Role of Hydrogen on the Friction Mechanism of Diamond-Like Carbon Films, Tribol. Lett., 2000, 9(3), p 137–142

    Google Scholar 

  14. B.P. Swain and R.O. Dusane, Microscopic Properties of H2 Diluted HWCVD Deposited a-SiC:H Film, Microelectron. Eng., 2006, 83, p 55–57

    Article  Google Scholar 

  15. B.P. Swain, The Analysis of Carbon Bonding Environments in the HWCVD Deposited a-SiC:H Films by XPS and Raman Spectroscopy, Surf. Coat. Technol., 2006, 201, p 1589–1593

    Article  Google Scholar 

  16. B.P. Swain, Influence of Process Pressure on HWCVD Deposited a-SiC:H Films, Surf. Coat. Technol., 2006, 201, p 1132–1137

    Article  Google Scholar 

  17. B.P. Swain, T.K. Gundu Rao, M. Roy, J. Gupta, and R.O. Dusane, Effect Of H2 Dilution On Cat-CVD A-Sic:H Films, Thin Solid Films, 2006, 501, p 173–176

    Article  Google Scholar 

  18. B.P. Swain, B.S. Swain, Y.B. Chung, and N.M. Hwang, Small-Angle X-Ray Scattering from Nano-Si Embedded a-SiC: H Deposited by Hot-Wire Chemical Vapor Deposition, Solid State Sci., 2009, 11, p 1408–1411

    Article  Google Scholar 

  19. B.P. Swain, B.S. Swain, S.H. Park, and N.M. Hwang, Plasmon Loss and Valence Band Structure of Silicon-Based Alloys Deposited by Hot Wire Chemical Vapor Deposition, J. Alloys Compd., 2009, 480, p 878–881

    Article  Google Scholar 

  20. F.G. Thankam and J. Muthu, Influence of Plasma Protein–Hydrogel Interaction Moderated by Absorption of Water on Long-Term Cell Viability in Amphiphilic Biosynthetic Hydrogels, RSC Adv., 2013, 3, p 24509–24520

    Article  Google Scholar 

  21. F.G. Thankam and J. Muthu, Influence of Physical and Mechanical Properties of Amphiphilic Biosynthetic Hydrogels on Long-Term Cell Viability, J. Mech. Behav. Biomed. Mater., 2014, 35, p 111–122

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Biogenic Research Centre, Thiruvananthapuram, Kerala, India, for helping with the various biological tests. Our sincere thanks go to National Centre for Cell Science, Pune, India, for providing us fibroblast cell. We are grateful to the Department of Biotechnology (DBT) for financial assistance vide Project No (BCIL/NER-BPMC/2012/650). Mr. Umesh Rizal acknowledged the financial support from JRF scheme under the Department of Biotechnology, Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhu P. Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizal, U., Swain, B.S., Rameshbabu, N. et al. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating. J. of Materi Eng and Perform 27, 2679–2686 (2018). https://doi.org/10.1007/s11665-018-3198-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3198-9

Keywords

Navigation