Skip to main content
Log in

In Situ X-Ray Diffraction Analysis of Face-Centered Cubic Metals Deformed at Room and Cryogenic Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study concerns the cryogenic processing of metals with simultaneous analysis of x-ray diffraction in a synchrotron ring. The mechanical properties improvement related to cryogenic processing of metals is attributed to the partial suppression of dynamic recovery. Thus, commercially pure metals with different stacking fault energies (silver, copper and aluminum) were deformed by uniaxial tensile tests and characterized by in situ x-ray diffraction, at room (293 K) and cryogenic (77 K) temperatures. The cryogenic processing allows a simultaneous improvement in ductility and strength for silver and copper and an improvement in strength for aluminum. This difference in mechanical properties was investigated by means of variations in crystallite size, microstrain and also the amount and size of dimples on the fracture surface. The microstructural refinement at cryogenic temperatures shows a tendency related to the stacking fault energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.C.C. Magalhães, A.M. Kliauga, M. Ferrante, and V.L. Sordi, Plastic Deformation of FCC Alloys at Cryogenic Temperature: The Effect of Stacking-Fault Energy on Microstructure and Tensile Behaviour, J. Mater. Sci., 2017, 52, p 7466–7478. https://doi.org/10.1007/s10853-017-0979-8

    Article  Google Scholar 

  2. D.C.C. Magalhães, M.F. Hupalo, and O.M. Cintho, Natural Aging Behavior of AA7050 Al Alloy After Cryogenic Rolling, Mater. Sci. Eng., A, 2014, 593, p 1–7. https://doi.org/10.1016/j.msea.2013.11.017

    Article  Google Scholar 

  3. H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, and C.C. Koch, Effect of Stacking Fault Energy on Deformation Behavior of Cryo-rolled Copper and Copper Alloys, Mater. Sci. Eng., A, 2011, 529, p 230–236. https://doi.org/10.1016/j.msea.2011.09.022

    Article  Google Scholar 

  4. S.K. Panigrahi, R. Jayaganthan, and V. Chawla, Effect of Cryorolling on Microstructure of Al–Mg–Si Alloy, Mater. Lett., 2008, 62, p 2626–2629. https://doi.org/10.1016/j.matlet.2008.01.003

    Article  Google Scholar 

  5. Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912. https://doi.org/10.1038/nature01133

    Article  Google Scholar 

  6. V.S. Sarma, J. Wang, W.W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, and Y.T. Zhu, Role of Stacking Fault Energy in Strengthening Due to Cryo-deformation of FCC Metals, Mater. Sci. Eng., A, 2010, 527, p 7624–7630. https://doi.org/10.1016/j.msea.2010.08.015

    Article  Google Scholar 

  7. Y.L. Gong, C.E. Wen, X.X. Wu, S.Y. Ren, L.P. Cheng, and X.K. Zhu, The Influence of Strain Rate, Deformation Temperature and Stacking Fault Energy on the Mechanical Properties of Cu Alloys, Mater. Sci. Eng., A, 2013, 583, p 199–204. https://doi.org/10.1016/j.msea.2013.07.001

    Article  Google Scholar 

  8. G.H. Xiao, N.R. Tao, and K. Lu, Microstructures and Mechanical Properties of a Cu–Zn Alloy Subjected to Cryogenic Dynamic Plastic Deformation, Mater. Sci. Eng., A, 2009, 513, p 13–21. https://doi.org/10.1016/j.msea.2009.01.022

    Article  Google Scholar 

  9. Y.S. Li, N.R. Tao, and K. Lu, Microstructural Evolution and Nanostructure Formation in Copper During Dynamic Plastic Deformation at Cryogenic Temperatures, Acta Mater., 2008, 56, p 230–241. https://doi.org/10.1016/j.actamat.2007.09.020

    Article  Google Scholar 

  10. W.S. Zhao, N.R. Tao, J.Y. Guo, Q.H. Lu, and K. Lu, High-Density Nano-scale Twins in Cu Induced by Dynamic Plastic Deformation, Scr. Mater., 2005, 53, p 745–749. https://doi.org/10.1016/j.scriptamat.2005.05.022

    Article  Google Scholar 

  11. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004

    Google Scholar 

  12. M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025–4039. https://doi.org/10.1016/S1359-6454(01)00300-7

    Article  Google Scholar 

  13. Y. Huang and P.B. Prangnell, The Effect of Cryogenic Temperature and Change in Deformation Mode on the Limiting Grain Size in a Severely Deformed Dilute Aluminium Alloy, Acta Mater., 2008, 56, p 1619–1632. https://doi.org/10.1016/j.scriptamat.2010.07.005

    Article  Google Scholar 

  14. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin, Microstructural Response of Pure Copper to Cryogenic Rolling, Acta Mater., 2010, 58, p 5262–5273. https://doi.org/10.1016/j.actamat.2010.05.056

    Article  Google Scholar 

  15. K. Edalati and Z. Horita, High-Pressure Torsion of Pure Metals: Influence of Atomic Bond Parameters and Stacking Fault Energy on Grain Size and Correlation with Hardness, Acta Mater., 2011, 59, p 6831–6836. https://doi.org/10.1016/j.actamat.2011.07.046

    Article  Google Scholar 

  16. T. Konkova, S. Mironov, A. Koznikov, and S.L. Semiatin, Microstructure Instability in Cryogenically Deformed Copper, Scr. Mater., 2010, 63, p 921–924. https://doi.org/10.1016/j.actamat.2011.07.046

    Article  Google Scholar 

  17. H. Parvin and M. Kazeminezhad, Dependency Modeling of Steady-State Grain Size on the Stacking Fault Energy Through Severe Plastic Deformation, Mater. Lett., 2015, 159, p 410–412. https://doi.org/10.1016/j.matlet.2015.07.041

    Article  Google Scholar 

  18. I.C. Dragomir, M. Gheorghe, N. Thadhani, and Rl Snyder, X-ray Peak Profile Analysis of Crystallite Size Distribution and Dislocation Type and Density Evolution in Nano-structured Cu Obtained by Deformation at Liquid Nitrogen Temperature, Mater. Sci. Eng., A, 2005, 402, p 158–162. https://doi.org/10.1016/j.msea.2005.04.028

    Article  Google Scholar 

  19. C. Gauss, I.R. Souza Filho, M.J.R. Sandim, P.A. Suzuki, A.J. Ramirez, and H.R.Z. Sandim, In situ Synchrotron x-Ray Evaluation of Strain-Induced Martensite in AISI, 201 Austenitic Stainless Steel During Tensile Testing, Mater. Sci. Eng., A, 2016, 651, p 507–516. https://doi.org/10.1016/j.msea.2015.10.110

    Article  Google Scholar 

  20. R.T. Smith, T. Lolla, D. Gandy, L. Wu, G. Faria, A.J. Ramirez, S.S. Babu, and P.M. Anderson, In Situ x-Ray Diffraction Analysis of Strain-Induced Transformations in Fe-and Co-base Hardfacing Alloys, Scr. Mater., 2015, 98, p 60–63. https://doi.org/10.1016/j.scriptamat.2014.11.003

    Article  Google Scholar 

  21. G. Faria, L. Wu, T. Alonso, A. Isaac, J. Piton, R. Neuenschwander, and A.J. Ramirez, Advanced Facility for Parallel Thermo-Mechanical Simulation and Synchrotron X-Ray Diffraction, In-situ Studies with Photons, Neutrons and Electrons Scattering II, T. Kannengiesser, S.S. Babu, Y. Komizu, and A.J. Ramirez, Ed., Springer, Berlin, 2014, p 245–259 https://doi.org/10.1007/978-3-319-06145-0_15

    Google Scholar 

  22. T. Ungár, Dislocation Densities, Arrangements and Character from X-ray Diffraction Experiments, Mater. Sci. Eng., A, 2001, 309, p 14–22. https://doi.org/10.1016/S0921-5093(00)01685-3

    Article  Google Scholar 

  23. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H.K.D.H. Bhadeshia, In-Situ Observations of Lattice Parameter Fluctuations in Austenite and Transformation to Bainite, Metall. Mater. Trans. A, 2005, 36, p 3281–3289. https://doi.org/10.1007/s11661-005-0002-x

    Article  Google Scholar 

  24. ASM. ASM Handbook Vol. 4, Heat Treating. ASM, 2004.

  25. ASTM. ASTM E407-07: Standard Practice for Microetching Metals and Alloys. ASTM, 2015.

  26. G. Faria. Exploring Metallic Materials Behavior Through In Situ Crystallographic Studies by Synchrotron Radiation. Magister Thesis in Mechanical Engineering, in the Materials And Fabrication Processes Area, University of Campinas, Campinas, 2014. http://repositorio.unicamp.br/handle/REPOSIP/265849

  27. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Prentice Hall, New Jersey, 2001

    Google Scholar 

  28. B.E. Warren, X-ray Diffraction, Dover Publisher, New York, 1990

    Google Scholar 

  29. A.R. Stokes and A.J.C. Wilson, Proc. Phys. Soc. London, 1944, 56, p 174–181

    Article  Google Scholar 

  30. E. Wessel, Some Basic and Engineering Considerations Regarding the Fracture of Metals at Cryogenic Temperatures, in: Behavior of Materials at Cryogenic Temperatures—ASTM STP 387, ASTM International, 1966, p 32–59.

  31. J. Weertman, Zener-Stroh Crack, Zener-Hollomon Parameter, and Other Topics, J. Appl. Phys., 1986, 60(6), p 1877–1887. https://doi.org/10.1063/1.337236

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CAPES (PROAP) for financial support, LNNano/CNPEM for the technical support during the usage of the XTMS installation (especially to Mr. Leonardo Wu) and LNLS/CNPEM for the infrastructure present in the XRD1 beamline (Proposal 20160282). MTI, MYM and RSN acknowledge CAPES for their scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Tadashi Izumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izumi, M.T., Quintero, J.J.H., Crivoi, M.R. et al. In Situ X-Ray Diffraction Analysis of Face-Centered Cubic Metals Deformed at Room and Cryogenic Temperatures. J. of Materi Eng and Perform 28, 4658–4666 (2019). https://doi.org/10.1007/s11665-019-04226-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04226-5

Keywords

Navigation