Skip to main content
Log in

Microstructure and Crystallographic Texture Changes under Torsion Loading of Pearlitic Steel Strips

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cold-drawn pearlitic steel strips exhibit a great combination of strength and ductility and are widely used in many engineering applications. Some of these applications require further mechanical conformation for the final use. An analysis of the microstructure and the change in crystallographic texture when strips are subjected to torsion processes necessary for some applications was made in the current study. It was shown that the formation of the wavy pearlite morphology associated with the <110> fiber texture parallel to the drawing axis could improve fatigue damage. Extreme dislocation densities and crystallographic defects induced by torsion enhanced the formation of ultrafine ferritic grains accompanied by partial cementite decomposition. The relationship between ferrite and cementite interfaces successfully simulated using the Shackleton model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Liang, L. Xiang, Y. Wang, Y.A.N. Chen, H. Wang, and L. Dai, Ratchetting in Cold-Drawn Pearlitic Steel Wires, Metall. Mater. Trans. A, 2019, 50(10), p 4561–4568

    Article  CAS  Google Scholar 

  2. E. Brandaleze, Structural Evolution of Pearlite in Steels with Different Carbon Content under Drastic Deformation during Cold Drawing, Procedia Mater. Sci. – Int. Congr. Sci. Technol. Metall. Mater., 2015, 8, p 1023–1030

    CAS  Google Scholar 

  3. N. Guo, B. Song, B.S. Wang, and Q. Liu, Influence of Torsion Deformation on Textures of Cold Drawing Pearlitic Steel Wires, Acta Metall. Sin. (English Lett.), 2015, 28(6), p 707–714

    Article  CAS  Google Scholar 

  4. L. Zhou, F. Fang, L. Wang, H. Chen, Z. Xie, and J. Jiang, Torsion Delamination and Recrystallized Cementite of Heavy Drawing Pearlitic Wires after Low Temperature Annealing, Mater. Sci. Eng. A, 2018, 713, p 52–60. https://doi.org/10.1016/j.msea.2017.12.055

    Article  CAS  Google Scholar 

  5. L. Zhou, F. Fang, L. Wang, X. Hu, Z. Xie, and J. Jiang, Torsion Performance of Pearlitic Steel Wires: Effects of Morphology and Crystallinity of Cementite, Mater. Sci. Eng. A, 2019, 743, p 425–435

    Article  CAS  Google Scholar 

  6. N. Guo, B. Luan, and Q. Liu, Influence of Pre-Torsion Deformation on Microstructures and Properties of Cold Drawing Pearlitic Steel Wires, Mater. Des., 2013, 50, p 285–292. https://doi.org/10.1016/j.matdes.2013.02.047

    Article  CAS  Google Scholar 

  7. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet, Structure and Deformaton Behaviour of Armco Iron Subjected to Severe Plastic Deformation, Acta Mater., 1996, 44(12), p 4705–4712

    Article  CAS  Google Scholar 

  8. F. Fang, L. Wang, L. Zhou, X. Min, and J. Jiang, Application of Texture Inheritance on Manufacturing Ultra-High Strength Pearlitic Steel Wire, Mater. Sci. Technol., 2018, 34(7), p 766–771

    Article  CAS  Google Scholar 

  9. V.G. Gavriljuk, Decomposition of Cementite in Pearlitic Steel Due to Plastic Deformation, Mater. Sci. Eng. A, 2003, 345(1–2), p 81–89

    Article  Google Scholar 

  10. Y.D. Liu, Y.D. Zhang, A. Tidu, and L. Zuo, <110> Fiber Texture Evolution of Ferrite Wires during Drawn-Torsion and Drawn-Annealing-Torsion Process, J. Mater. Sci. Technol., 2012, 28(11), p 1010–1014

    Article  CAS  Google Scholar 

  11. M. Masoumi, A. Sinatora, and H. Goldenstein, Role of Microstructure and Crystallographic Orientation in Fatigue Crack Failure Analysis of a Heavy Haul Railway Rail, Eng. Fail. Anal., 2019, 96, p 320–329

    Article  CAS  Google Scholar 

  12. M.G. Randall and J.P. Seong, Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals (Canada), Wiley, Hoboken, 2008

    Google Scholar 

  13. P. Xu, Y. Liang, J. Li, and C. Meng, Further Improvement in Ductility Induced by the Refined Hierarchical Structures of Pearlite, Mater. Sci. Eng. A, 2019, 745, p 176–184

    Article  CAS  Google Scholar 

  14. V.T.L. Buono, M.S. Andrade, and B.M. Gonzalez, Kinetics of Strain Aging in Drawn Pearlitic Steels, Metall. Mater. Trans. A, 1998, 29, p 1415–1423

    Article  Google Scholar 

  15. K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi, Cementite Decomposition in Heavily Drawn Pearlite Steel Wire, Scr. Mater., 2001, 44, p 977–983

    Article  CAS  Google Scholar 

  16. G.A. Nematollahi, B. Grabowski, D. Raabe, and J. Neugebauer, Multiscale Description of Carbon-Supersaturated Ferrite in Severely Drawn Pearlitic Wires, Acta Mater., 2016, 111, p 321–334

    Article  CAS  Google Scholar 

  17. R. Naraghi, M. Selleby, and J. Ågren, Thermodynamics of Stable and Metastable Structures in Fe-C System, Calphad Comput. Coupling Phase Diagrams Thermochem., 2014, 46, p 148–158. https://doi.org/10.1016/j.calphad.2014.03.004

    Article  CAS  Google Scholar 

  18. Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, and R. Kirchheim, Atomic-Scale Mechanisms of Deformation- Induced Cementite Decomposition in Pearlite, Acta Mater., 2011, 59, p 3965–3977

    Article  CAS  Google Scholar 

  19. N.Y. Zolotorevsky, V.V. Rybin, A.N. Matvienko, E.A. Ushanova, and S.A. Philippov, Misorientation Angle Distribution of Deformation-Induced Boundaries Provided by Their EBSD-Based Separation from Original Grain Boundaries: Case Study of Copper Deformed by Compression, Mater. Charact., 2019, 147, p 184–192

    Article  CAS  Google Scholar 

  20. H. Grimmer, Coincidence Site Lattices, Acta Crystallogr. Sect. A, 1976, 32(5), p 783–785

    Article  Google Scholar 

  21. S.W. Joung, U.G. Kang, S.P. Hong, Y.W. Kim, and W.J. Nam, Aging Behavior and Delamination in Cold Drawn and Post-Deformation Annealed Hyper-Eutectoid Steel Wires, Mater. Sci. Eng. A, 2013, 586, p 171–177

    Article  CAS  Google Scholar 

  22. X. Zhang, A. Godfrey, X. Huang, N. Hansen, and Q. Liu, Microstructure and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wire, Acta Mater., 2011, 59(9), p 3422–3430. https://doi.org/10.1016/j.actamat.2011.02.017

    Article  CAS  Google Scholar 

  23. N. Jia, Y.F. Shen, J.W. Liang, X.W. Feng, H.B. Wang, and R.D.K. Misra, Nanoscale Spheroidized Cementite Induced Ultrahigh Strength-Ductility Combination in Innovatively Processed Ultrafine-Grained Low Alloy Medium-Carbon Steel, Sci. Rep., 2017, 7, p 2679

    Article  CAS  Google Scholar 

  24. S. Emami and T. Saeid, A Comparative Study on the Microstructure Development of Friction Stir Welded 304 Austenitic, 430 Ferritic, and 2205 Duplex Stainless Steels, Mater. Chem. Phys. J., 2019, 237, p 121833

    Article  CAS  Google Scholar 

  25. E. Ohaeri, U. Eduok, and J. Szpunar, Hydrogen Related Degradation in Pipeline Steel: A Review, Hydrogen Energy, 2018, 43, p 14584–14617

    Article  CAS  Google Scholar 

  26. L. Wang, B. Wang, and P. Zhou, Misorientation, Grain Boundary, Texture and Recrystallization Study in X90 Hot Bend Related to Mechanical Properties, Mater. Sci. Eng. A, 2018, 711, p 588–599

    Article  CAS  Google Scholar 

  27. F.S. Borchardt, Characterization of the Proeutectoid Cementite Networks Observed in the SAE 1092 Wire Rod Steel Grade, University of Pittsburgh, Pittsburgh, 2004

    Google Scholar 

  28. M. Hölscher, D. Raabe, and K.L. Icke, Relationship Between Rolling Textures and Shear Textures in FCC and BCC Metals, Acta Metall., 1994, 42(3), p 879–886

    Article  Google Scholar 

  29. S. Suwas and N.P. Gurao, Crystallographic Texture in Materials, J. Indian Inst. Sci., 2008, 88(2), p 151–177

    CAS  Google Scholar 

  30. F. Bachmann, R. Hielscher, and H. Schaeben, Ultramicroscopy Grain Detection from 2d and 3d EBSD Data—Specification of the MTEX Algorithm, Ultramicroscopy, 2011, 111, p 1720–1733

    Article  CAS  Google Scholar 

  31. M.H. Hong, W.T. Reynolds, T. Tarui, and K. Hono, Atom Probe and Transmission Electron Microscopy Investigations of Heavily Drawn Pearlitic Steel Wire, Metall. Mater. Trans. A, 1999, 30(March), p 717–727

    Article  Google Scholar 

  32. F. Fang, L. Zhou, X. Hu, X. Zhou, Y. Tu, Z. Xie, and J. Jiang, Microstructure and Mechanical Properties of Cold-Drawn Pearlitic Wires Affect by Inherited Texture, Mater. Des., 2015, 79, p 60–67

    Article  CAS  Google Scholar 

  33. M. Masoumi, E.A. Ariza, A. Sinatora, and H. Goldenstein, Role of Crystallographic Orientation and Grain Boundaries in Fatigue Crack Propagation in Used Pearlitic Rail Steel, Mater. Sci. Eng. A, 2018, 722, p 147–155

    Article  CAS  Google Scholar 

  34. G. Langford, A study of the deformation of patented steel wire, Metall. Mater. Trans. B, 1970, 1(2), p 465–477

    Article  CAS  Google Scholar 

  35. A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty, and I. Samajdar, Defining a Relationship between Pearlite Morphology and Ferrite Crystallographic Orientation, Acta Mater., 2017, 129, p 278–289

    Article  CAS  Google Scholar 

  36. S.A. Hackney and G.J. Shiflet, The Pearkite-Austenite Growth Interface in an Fe-08C-12Mn Alloy, Acta Metall., 1987, 35(5), p 1007–1017

    Article  CAS  Google Scholar 

  37. D.N. Shackleton and P.M. Kelly, The Crystallographic of Cementite Precipitation in the Bainite Transformation, Acta Metall., 1967, 15, p 979–992

    Article  CAS  Google Scholar 

  38. S. Rui, Y. Shang, Y. Su, W. Qiu, L. Niu, and H. Shi, EBSD Analysis of Cyclic Load Effect on Final Misorientation Distribution of Post-Mortem Low Alloy Steel: A New Method for Fatigue Crack Tip Driving Force Prediction, Int. J. Fatigue, 2018, 113, p 264–276

    Article  CAS  Google Scholar 

  39. Y. Chen, Y. Tsai, P. Tung, S. Tsai, C. Chen, and S. Wang, Phase Quantification in Low Carbon Nb-Mo Bearing Steel by Electron Backscatter Diffraction Technique Coupled with Kernel Average Misorientation, Mater. Charact., 2018, 139, p 49–58

    Article  CAS  Google Scholar 

  40. I. Basu, H. Fidder, V. Ocelíc, and T.M. de Hosson, Local Stress States and Microstructural Damage Hexagonal Close Packed Metals, Crystals, 2018, 8(1), p 1–15

    Article  Google Scholar 

  41. J.A. Szpunar, R. Basu, and M. Eskandari, The Mechanism of Failure by Hydrogen Induced Cracking in an Acidic Environment for API, 5L X70 Pipeline Steel, Hydrogen. Energy, 2015, 40, p 1096–1107

    Article  Google Scholar 

  42. M. Masoumi, H.F.G. Abreu, L.F.G. Herculano, J.M. Pardal, S.S.M. Tavares, and M.J.G. Silva, EBSD Study of Early Fractured Phenomena in a 350 Grade Maraging Steel Elbows Exposed to Hydrofluoric Acid, Eng. Fail. Anal., 2019, 104, p 379–387

    Article  CAS  Google Scholar 

  43. M. Sarvghad, D. Del Aguila, and G. Will, Optimized Corrosion Performance of a Carbon Steel in Dilute Sulfuric Acid through Heat Treatment, Appl. Surf. Sci., 2019, 491, p 460–468

    Article  CAS  Google Scholar 

  44. T. Teshima, M. Kosaka, K. Ushioda, N. Koga, and N. Nakada, Local Cementite Cracking Induced by Heterogeneous Plastic Deformation in Lamellar Pearlite, Mater. Sci. Eng. A, 2017, 679, p 223–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by PETROBRAS. Microstructural characterization of the specimens was performed at Brazilian Nanotechnology National Laboratory and at the Analytical Center of UFC/CT-INFRA/MCTI-SISNANO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masoumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, M., Béreš, M., Herculano, L.F.G. et al. Microstructure and Crystallographic Texture Changes under Torsion Loading of Pearlitic Steel Strips. J. of Materi Eng and Perform 29, 7250–7259 (2020). https://doi.org/10.1007/s11665-020-05232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05232-8

Keywords

Navigation