Skip to main content
Log in

Consolidation of Pure Magnesium Powder by Equal-Channel Angular Pressing with Back Pressure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pure Mg particles were consolidated by equal-channel angular pressing (ECAP) with back pressure at 423 K. Fully dense bulk Mg with a homogeneous grain structure was obtained. After multiple passes, grains were significantly refined to below 2 µm, resulting in much enhanced yield strength and enhanced ductility. The intense \(\left(10\stackrel{-}{1}1\right)\langle \stackrel{-}{1}2\stackrel{-}{1}0\rangle \) texture was developed during ECAP, leading to texture softening. The oxide layer on the surface of Mg particles was broken into nano-sized pieces distributed in the matrix, hindering the movement of dislocations and providing dispersion strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert, Magnesium: Properties-Applications-Potential, Mater. Sci. Eng., A, 2001, 302, p 37-45.

    Article  Google Scholar 

  2. M. Mabuchi, Y. Chino, H. Iwasaki et al., The Grain Size and Texture Dependence of Tensile Properties in Extruded Mg-9Al-1Zn, Mater. Trans., 2001, 42, p 1182-1118.

    Article  CAS  Google Scholar 

  3. J.H. Lee, T. Lee, S.W. Song et al., Enhancing Yield Strength by Suppressing Detwinning in a Rolled Mg-3Al-1Zn Alloy with 10-12 Twins, Mater. Sci. Eng., A, 2014, 612, p 328-333.

    Article  CAS  Google Scholar 

  4. J. Zhang, Q. Ma and F.S. Pan, Effects of trace Er Addition on the Microstructure and Mechanical Properties of Mg–Zn–Zr alloy, Mater. Des., 2010, 31, p 4043-4049.

    Article  CAS  Google Scholar 

  5. G.D. Fan, M.Y. Zheng, X.S. Hu et al., Improved Mechanical Property and Internal Friction of Pure Mg Processed by ECAP, Mater. Sci. Eng., A, 2012, 556, p 588-594.

    Article  CAS  Google Scholar 

  6. B.J. Bonarski, E. Schafler, B. Mikulowski and M.J. Zehetbauer, Effects of Recrystallization on Texture, Microstructure and Mechanical Properties in HPT-Deformed Pure Mg, J. Phys: Conf. Ser., 2010, 240, p 012133.

    Google Scholar 

  7. P. W. J. Mckenzie, R. Lapovok, ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure, Acta Materialia. 58 (2010) 3198-3211.

  8. T.G. Langdon, Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties Through Grain Refinement, Acta Mater., 2013, 61, p 7035-7059.

    Article  CAS  Google Scholar 

  9. H. Liu, J. Ju, X.W. Yang et al., J. Alloy. Compd., 2017, 704, p 509-517.

    Article  CAS  Google Scholar 

  10. H. Liu, C. Sun, C. Wang et al., J. Mater. Sci. Technol., 2020, 59, p 61-71.

    Article  Google Scholar 

  11. W.C. Su, L. Lu and M.O. Lai, A Model for the Grain Refinement Mechanism in Equal Channel Angular Pressing of Mg alloy from Microstructural Studies, Mater. Sci. Eng., A, 2006, 434, p 227-236.

    Article  CAS  Google Scholar 

  12. F.M. Lu, A.B. Ma, J.H. Jiang et al., Enhanced Mechanical Properties and Rolling Formability of Fine-Grained Mg–Gd–Zn–Zr Alloy Produced by Equal-Channel Angular Pressing, J. Alloy. Compd., 2015, 643, p 28-33.

    Article  CAS  Google Scholar 

  13. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo and M. Vedani, Microstructure, Mechanical Behavior and Low Temperature Superplasticity of ECAP Processed ZM21 Mg Alloy, J. Alloy. Compd., 2015, 638, p 267-276.

    Article  CAS  Google Scholar 

  14. W.B. Fang, W. Fang and H.F. Sun, Preparation of High-Strength Mg–3Al–Zn Alloy with Ultrafine-Grained Microstructure by Powder Metallurgy, Powder Technol., 2011, 212, p 161–165.

    Article  CAS  Google Scholar 

  15. A. Mogucheva, E. Babich, B. Ovsyannikov et al., Microstructural Evolution in a 5024 Aluminum Alloy Processed by ECAP with and Without Back Pressure, Mater. Sci. Eng., A, 2013, 560, p 178-192.

    Article  CAS  Google Scholar 

  16. J. Li, W. Xu, X. Wu, H. Ding and K. Xia, Effects of Grain Size on Compressive Behaviour in Ultrafine Grained Pure Mg Processed by Equal Channel Angular Pressing at Room Temperature, Mater. Sci. Eng., A, 2011, 528, p 5993-5998.

    Article  CAS  Google Scholar 

  17. K. Xia, J.T. Wang, X. Wu et al., Equal Channel Angular Pressing of Magnesium Alloy AZ31, Mater. Sci. Eng., A, 2005, 410, p 324-327.

    Article  CAS  Google Scholar 

  18. K. Xia and X. Wu, Back Pressure Equal Channel Angular Consolidation of Pure Al Particles, Scripta Mater., 2005, 53, p 1225-1229.

    Article  CAS  Google Scholar 

  19. K. Xia, X. Wu, T. Honma et al., Ultrafine Pure Aluminum Through Back Pressure Equal Channel Angular Consolidation (BP-ECAC) of Particles, J. Mater. Sci., 2007, 42, p 1551-1560.

    Article  CAS  Google Scholar 

  20. P. Minarik, J. Vesely, R. Kral et al., Exceptional Mechanical Properties of Ultra-Fine Grain Mg-4Y-3RE Alloy Processed by ECAP, Mater. Sci. Eng., A, 2017, 708, p 193-198.

    Article  CAS  Google Scholar 

  21. M. Cabibbo, C. Paoletti, P. Minarik et al., Secondary Phase Precipitation and Thermally Stable Microstructure Refinement Induced by ECAP on Mg-Y-Nd (WN43) Alloy, Mater. Lett., 2019, 237, p 5-8.

    Article  CAS  Google Scholar 

  22. J.Y. Zhang, Z.X. Kang and L.L. Zhou, Microstructure Evolution and Mechanical Properties of Mg–Gd–Nd–Zn–Zr Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2015, 647, p 184-190.

    Article  CAS  Google Scholar 

  23. E. Dogan, S. Wang, M.W. Vaughan et al., Dynamic Precipitation in Mg-3Al-1Zn Alloy During Different Plastic Deformation Modes, Acta Mater., 2016, 116, p 1-13.

    Article  CAS  Google Scholar 

  24. A.K. Chaubey, S. Scudino and M.S. Khoshkho, High-Strength Ultrafine Grain Mg–7.4%Al Alloy Synthesized by Consolidation of Mechanically Alloyed Powders, J. Alloys Compd., 2014, 610, p 456-461.

    Article  CAS  Google Scholar 

  25. J.Z. Li, H. Ding, X.L. Wu, W. Xu and K. Xia, The Influence of Texture and Grain Size on Compressive Deformation Behavior of Pure Mg Through Equal-Channel Angular Processing, Mater. Sci. Forum, 2010, 667-669, p 385-390.

    Article  Google Scholar 

  26. W.J. Kim, C.W. An, Y.S. Kim, S.I. Hong et al., Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing, Scripta Mater., 2002, 47, p 39-44.

    Article  CAS  Google Scholar 

  27. C.P. Wang, F.G. Li, B. Chen et al., Severe Plastic Deformation Techniques for Bulk Ultrafine-Grained Materials, Rare Metal Materials and Engineering, 2012, 41, p 941-946.

    Article  Google Scholar 

  28. Y. Kim, S. Lee, J.B. Jeon et al., Effect of a High Angle Grain Boundary on Deformation Behavior of Al Nanopillars, Scripta Mater., 2015, 107, p 5-9.

    Article  CAS  Google Scholar 

  29. G.H. Zahid, Y. Huang and P.B. Prangnell, Microstructure and Texture Evolution During Annealing a Cryogenic-SPD Processed Al-Alloy with a Nanoscale Lamellar HAGB Grain Structure, Acta Mater., 2009, 57, p 3509-3521.

    Article  CAS  Google Scholar 

  30. Y.D. Qiao, X. Wang, Z.Y. Liu and E.D. Wang, Effects of Grain Size, Texture and Twinning on Mechanical Properties and Work-Hardening Behaviors of Pure Mg, Mater. Sci. Eng., A, 2013, 578, p 240-246.

    Article  CAS  Google Scholar 

  31. W. Lei, W. Liang, H. Wang and Y. Sun, Evolution of Texture and Mechanical Properties of Pure Mg Processed by ECAP at Room Temperature, J. The Miner. Metals Mater. Soc., 2017, 69, p 2297-2301.

    Article  CAS  Google Scholar 

  32. X.G. Qiao, Y.W. Zhao, W.M. Gan et al., Hardening Mechanism of Commercially Pure Mg Processed by High Pressure Torsion at Room Temperature, Mater. Sci. Eng., A, 2014, 619, p 95-106.

    Article  CAS  Google Scholar 

  33. K. Mathis, K. Nyilas, A. Axt et al., The Evolution of Non-basal Dislocations as a Function of Deformation Temperature in Pure Magnesium Determined by X-ray Diffraction, Acta Mater., 2004, 52, p 2889-2894.

    Article  CAS  Google Scholar 

  34. I. Dragomir and T. Ungar, Contrast Factors of Dislocations in the Hexagonal Crystal System, J. Appl. Crystallogr., 2002, 35, p 556-564.

    Article  CAS  Google Scholar 

  35. R. Verma, A. Srinivasan, R. Jayaganthan, S.K. Nath and S. Goel, Studies on Tensile Behaviour and Microstructural Evolution of UFG Mg-4Zn-4Gd Alloy Processed Through Hot Rolling, Mater. Sci. Eng., A, 2017, 704, p 412-426.

    Article  CAS  Google Scholar 

  36. D. Liu, M.Z. Bian, S.M. Zhu et al., Microstructure and Tensile Properties of Mg-3Al-1Zn Sheets Produced by Hot-Roller-Cold-Material Rolling, Mater. Sci. Eng., A, 2017, 706, p 304-310.

    Article  CAS  Google Scholar 

  37. K. Mathism, G. Farkas, G. Garces and J. Gubicza, Evolution of Dislocation Density During Compression of a Mg-Zn-Y Alloy with Long Period Stacking Ordered Structure, Mater. Lett., 2017, 190, p 86-89.

    Article  CAS  Google Scholar 

  38. L. Balogh, R.B. Figueiredo, T. Ungar and T.G. Langdon, The Contributions of Grain Size, Dislocation Density and Twinning to the Strength of a Magnesium Alloy Processed by ECAP, Mater. Sci. Eng., A, 2010, 528, p 533-538.

    Article  CAS  Google Scholar 

  39. T. Krajnak, P. Minarik, J. Straska, J. Gubicza, K. Mathis and M. Janecek, Influence of Equal Channel Angular Pressing Temperature on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium, J. Alloy. Compd., 2017, 705, p 273-282.

    Article  CAS  Google Scholar 

  40. X.J. Wang, X.S. Hu, W.Q. Liu et al., Ageing Behavior of As-cast SiCp/AZ91 Mg Matrix Composites, Mater. Sci. Eng., A, 2017, 682, p 491-500.

    Article  CAS  Google Scholar 

  41. P. Xiao, Y.M. Gao, X.R. Yang et al., Processing, Microstructure and Ageing Behavior of In-situ Submicron TiB2 Particles Reinforced AZ91 Mg Matrix Composites, J. Alloy. Compd., 2018, 764, p 96-106.

    Article  CAS  Google Scholar 

  42. W.M. Gan, K. Wu, M.Y. Zheng et al., Microstructure and Mechanical Property of the ECAPed Mg2Si/Mg Composite, Mater. Sci. Eng., A, 2009, 516, p 283-289.

    Article  CAS  Google Scholar 

  43. H.K. Lin, J.C. Huang and T.G. Langdon, Relationship Between Texture and Low Temperature Superplasticity in an Extruded AZ31 Mg Alloy Processed by ECAP, Mater. Sci. Eng., A, 2005, 402, p 250-257.

    Article  CAS  Google Scholar 

  44. W.J. Kim, S.I. Hong, Y.S. Kim et al., Texture Development and its Effect on Mechanical Properties of an AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing, Acta Mater., 2003, 51, p 3293-3307.

    Article  CAS  Google Scholar 

  45. W.J. Kim, H.W. Lee, S.J. Yoo and Y.B. Park, Texture and Mechanical Properties of Ultrafine-Grained Mg–3Al–1Zn Alloy Sheets Prepared by High-Ratio Differential Speed Rolling, Mater. Sci. Eng., A, 2011, 528, p 874-879.

    Article  CAS  Google Scholar 

  46. E.O. Hall, The Deformation and Aging of Mild Steel, Proc. Phys. Soc. Section B, 1951, 64, p 747-753.

    Article  Google Scholar 

  47. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25-28.

    CAS  Google Scholar 

  48. J.E. Bailey and P.B. Hirsch, The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver, Philos. Mag. A J. Theor. Exp. Appl. Phys., 1960, 5, p 485-497.

    CAS  Google Scholar 

  49. A. Sanaty-Zadeh, Comparison Between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites with Emphasis on Consideration of Hall-Petch Effect, Mater. Sci. Eng., A, 2012, 531, p 112-118.

    Article  CAS  Google Scholar 

  50. T.S. Srivatsan, Book Review: Dispersion Strengthened Aluminum Alloys, Mater. Manuf. Processes, 1991, 6, p 565-568.

    Article  Google Scholar 

  51. Y.D. Qiao, X. Wang, Z.Y. Liu and E.D. Wang, Effect of Temperature on Microstructures, Texture and Mechanical Properties of hot Rolled Pure Mg Sheets, Mater. Sci. Eng., A, 2012, 568, p 202-205.

    Article  CAS  Google Scholar 

  52. F.E. Hauser, P.R. Landon and J.E. Dorn, Fracture of Magnesium Alloys at Low Temperature, Trans. Am. Inst. Min. Metall. Eng., 1956, 206, p 589-593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xia, K. & Ding, H. Consolidation of Pure Magnesium Powder by Equal-Channel Angular Pressing with Back Pressure. J. of Materi Eng and Perform 30, 2213–2219 (2021). https://doi.org/10.1007/s11665-021-05479-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05479-9

Keywords

Navigation