Skip to main content

Advertisement

Log in

Simultaneous Enhancement of Strength and Toughness in a Medium-Carbon Martensitic Steel by Ti-Mo Addition

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A 1700 MPa grade medium-carbon Ti-Mo martensitic steel was produced by thermo-mechanical control process (TMCP) and quenching–tempering (Q-T) process. Microstructural and precipitation analyses were performed to characterize the refined microstructure and (Ti, Mo)C particles. Unlike other high-strength steels, the impact toughness of the 1700 MPa grade Ti-Mo-bearing martensitic steel was improved as well (42 J at −40 °C), which is close to the levels of maraging steel and secondary hardening steel with higher alloy contents. The quenching and tempering treatment refined prior austenite grains and facilitated the formation of nanoscale (Ti, Mo)C particles. Precipitation strengthening and grain refinement strengthening contributed to the improvement in strength and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.A. Nibur, B.P. Somerday, C.S. Marchi, J.W. Foulk, M. Dadfarnia and P. Sofronis, The Relationship Between Crack-Tip Strain and Subcritical Cracking Thresholds for Steels in High-Pressure Hydrogen Gas, Metall. Mater. Trans. A., 2013, 269, p 248–269.

    Article  Google Scholar 

  2. C. Garcia-Mateo, F.G. Caballero and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825.

    Article  CAS  Google Scholar 

  3. J. Hu, L.X. Du and J.J. Wang, Effect of Cooling Procedure on Microstructures and Mechanical Properties of Hot Rolled Nb-Ti Bainitic High Strength Steel, Mater. Sci. Eng. A., 2012, 554, p 79–185.

    Article  CAS  Google Scholar 

  4. J. Hu, L.X. Du, M. Zang, S.J. Yin, Y.G. Wang, X.Y. Wang, G. Qi, X.H. Gao and R.D.K. Misra, On the Determining Role of Acicular Ferrite in V-N Microalloyed Steel in Increasing Strength-Toughness Combination, Mater. Charact., 2016, 118, p 446–453.

    Article  CAS  Google Scholar 

  5. J. Hu, L.X. Du, Y. Dong, Q.W. Meng and R.D.K. Misra, Effect of Ti Variation on Microstructure Evolution and Mechanical Properties of Low Carbon Medium Mn Heavy Plate Steel, Mater. Charact., 2019, 152, p 21–35.

    Article  CAS  Google Scholar 

  6. J. Hu, L.X. Du and J.J. Wang, Effect of V on Intragranular Ferrite Nucleation of High Ti Bearing Steel, Scripta Mater., 2013, 12, p 953–956.

    Article  Google Scholar 

  7. N. Tsuji, R. Ueji, Y. Minamino and Y. Saito, A New and Simple Process to Obtain Nano-Structured Bulk Low-Carbon Steel with Superior Mechanical Property, Scripta Mater., 2002, 46, p 305–310.

    Article  CAS  Google Scholar 

  8. R. Ueji, N. Tsuji, Y. Minamino and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold Rolling and Annealing of Martensite, Acta Mater., 2002, 50, p 4177–4189.

    Article  CAS  Google Scholar 

  9. Q. Yuan, G. Xu, S. Liu, M. Liu, H.J. Hu and G.Q. Li, Effect of Rolling Reduction on Microstructure and Property of Ultrafine Grained Low-Carbon Steel Processed by Cryorolling Martensite, Metals., 2018, 8, p 518–531.

    Article  Google Scholar 

  10. Q. Yuan, G. Xu, M. Liu, H.J. Hu and J.Y. Tian, Effects of Rolling Temperature on the Microstructure and Mechanical Properties in an Ultrafine-Grained Low-Carbon Steel, Steel Res. Int., 2018 https://doi.org/10.1002/srin.201800318

    Article  Google Scholar 

  11. Q. Yuan, G. Xu, M. Liu, S. Liu and H.J. Hu, Evaluation of Mechanical Properties and Microstructures of Ultrafine Grain Low-Carbon Steel Processed by Cryorolling and Annealing, Trans. Indian Inst. Met., 2019, 72, p 741–749.

    Article  CAS  Google Scholar 

  12. H. Aghajani and M. Pouranvari, A Pathway to Produce Strong and Tough Martensitic Stainless Steels Resistance Spot Welds, Sci. Technol. Weld. Joi., 2019, 3, p 185–192.

    Article  Google Scholar 

  13. S.R.E. Hosseini and H. Arabi, Change in Mechanical Properties by Titanium Addition in Aged Martensitic 18Ni–9Co–5Mo Alloy, ISIJ Int., 2012, 1, p 147–150.

    Article  Google Scholar 

  14. H. Kwon, C.M. Kim, K.B. Lee, H.R. Yang and J.H. Lee, Effects of Co and Ni on Secondary Hardening and Fracture Behavior of Martensitic Steels Bearing W and Cr, Metall. Mater. Trans. A., 1999, 1, p 397–401.

    Google Scholar 

  15. G. Casalino, S.L. Campanelli, N. Contuzzi and A.D. Ludovico, Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel, Opt. Laser Technol., 2015, 65, p 151–158.

    Article  CAS  Google Scholar 

  16. B. Mooney, K.I. Kourousis, R. Raghavendra and D. Agius, Process Phenomena Influencing the Tensile and Anisotropic Characteristics of Additively Manufactured Maraging Steel, Mater. Sci. Eng. A., 2019, 745, p 115–125.

    Article  CAS  Google Scholar 

  17. J.J. Sun, S.W. Guo, S.D. Zhao, M.Y. Ma and Y.Q. Liu, Improving Strength of Cold-Drawn Wire by Martensitic Transformation in a 0.65 wt% C Low-Alloy Steel, Mater. Sci. Eng. A., 2020, 790, p 139719.

    Article  CAS  Google Scholar 

  18. X.L. Gan, Q. Yuan, G. Zhao, H.J. Hu, J.Y. Tian and G. Xu, Investigating the Properties of Coil Tail in Ti–Nb–Mo Microalloyed Hot-Rolled Strip, Steel Res. Int., 2019, 90, p 1900040. https://doi.org/10.1002/srin.201900040

    Article  CAS  Google Scholar 

  19. Y.W. Kim, S.G. Hong, Y.H. Huh and C.S. Lee, Role of Rolling Temperature in the Precipitation Hardening Characteristics of Ti–Mo Microalloyed Hot-Rolled High Strength Steel, Mater. Sci. Eng. A., 2014, 615, p 255–261.

    Article  Google Scholar 

  20. X.L. Gan, Q. Yuan, G. Zhao, H.W. Ma, W. Liang, Z.L. Xue, W.W. Qiao and G. Xu, Quantitative Analysis of Microstructures and Strength of Nb-Ti Microalloyed Steel with Different Ti Additions, Metall. Mater. Trans. A., 2020, 5, p 2084–2096.

    Article  Google Scholar 

  21. N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas and C. Levaillant, Relationship Between Microstructure and Mechanical Properties of a 5% Cr Tempered Martensitic Tool Steel, Mater. Sci. Eng. A., 2004, 387–389, p 171–175.

    Article  Google Scholar 

  22. V. Leskovšek, B. Šuštaršič and G. Jutriša, The Influence of Austenitizing and Tempering Temperature on the Hardness and Fracture Toughness of Hot-Worked H11 Tool Steel, J. Mater. Process. Technol., 2006, 178, p 328–334.

    Article  Google Scholar 

  23. P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon and C. Levaillant, The Effect of the Addition of Alloying Elements on Carbide Precipitation and Mechanical Properties in 5% Chromium Martensitic Steels, Acta Mater., 2007, 55, p 4877–4889.

    Article  CAS  Google Scholar 

  24. S. Zhirafar, A. Rezaeian and M. Pugh, Effect of Cryogenic Treatment on the Mechanical Properties of 4340 Steel, J. Mater. Process. Technol., 2007, 186, p 298–303.

    Article  CAS  Google Scholar 

  25. C. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 3–4, p 87–94.

    Google Scholar 

  26. W. Liang, Q. Yuan, G.H. Chen, M. Liu and W.W. Qiao, Fracture Evolution in Ferrite/Martensite Dual-Phase Flange Steel, Ironmak. Steelmak., 2021, 48, p 88–96.

    Article  CAS  Google Scholar 

  27. J.J. Qi, Y.H. Huang and Y. Zhang, Microalloyed steels, 1st ed. Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  28. Y.W. Kim, J.H. Kim, S.G. Hong and C.S. Lee, Effects of Rolling Temperature on the Microstructure and Mechanical Properties of Ti–Mo Microalloyed Hot-Rolled High Strength Steel, Mater. Sci. Eng. A., 2014, 605, p 244–252.

    Article  CAS  Google Scholar 

  29. C. Sun, P.X. Fu, X.P. Ma, H.H. Liu, N.Y. Du, Y.F. Cao, H.W. Liu and D.Z. Li, Effect of Matrix Carbon Content and Lath Martensite Microstructures on the Tempered Precipitates and Impact Toughness of a Medium-Carbon Low-Alloy Steel, J. Mater. Res. Technol., 2020, 4, p 7701–7710.

    Article  Google Scholar 

  30. L. Ma, J. Han, J.Q. Shen and S.S. Hu, Effects of Microalloying and Heat-Treatment Temperature on the Toughness of 26Cr–3.5Mo Super Ferritic Stainless Steels, Acta Metall. Sin-Eng., 2014, 27, p 407–415.

    Article  CAS  Google Scholar 

  31. G.R. Speich, D.S. Dabkowski and L.F. Porter, Strength and Toughness of Fe-10ni Alloys Containing C, Cr, Mo, and Co, Metall. Trans., 1973, 1, p 303–315.

    Article  Google Scholar 

  32. H. Kwon, C.M. Kim, K.B. Lee, H.R. Yang and J.H. Lee, Effect of Alloying Additions on Secondary Hardening Behavior of Mo-Containing Steels, Metall. Mater. Trans. A., 1997, 3, p 621–627.

    Article  Google Scholar 

  33. E. Mani and T. Udhayakumar, Effect of Prior Austenitic Grain Size and Tempering Temperature on the Energy Absorption Characteristics of Low Alloy Quenched and Tempered Steels, Mater. Sci. Eng. A., 2018, 716, p 92–98.

    Article  CAS  Google Scholar 

  34. A. Saastamoinen, A. Kaijalainen, J. Heikkala, D. Porter and P. Suikkanen, The Effect of Tempering Temperature on Microstructure, Mechanical Properties and Bendability of Direct-Quenched Low-Alloy Strip Steel, Mater. Sci. Eng. A., 2018, 730, p 284–294.

    Article  CAS  Google Scholar 

  35. D. Firrao, P. Matteis and A.D. Sario, Low Temperature Tempering of Low Alloy 39NiCrMo3 and 36NiCrMo16 Quenched and Tempered Steels, Mater. Des. Pro. Com., 2021, 1, p e142.

    Google Scholar 

  36. E. Abbasi, Q.S. Luo and D. Owens, Microstructural Characteristics and Mechanical Properties of low-Alloy, Medium-Carbon Steels After Multiple Tempering, Acta Metall. Sin-Eng., 2019, 1, p 74–88.

    Article  Google Scholar 

  37. E. Abbasi, Q.S. Luo and D. Owens, A Comparison of Microstructure and Mechanical Properties of Low-Alloy-Medium-Carbon Steels After Quench-Hardening, Mater. Sci. Eng. A., 2018, 725, p 65–75.

    Article  CAS  Google Scholar 

  38. R. Jafari, S. Kheirandish and S. Mirdamadi, Effect of Q&P Heat Treatment on Fine Microstructure and Mechanical Properties of a low-Alloy Medium-Carbon Steel, AIP Conf. Proc., 2017 https://doi.org/10.1063/1.5018962

    Article  Google Scholar 

  39. C. Liu, X.X. Cui and C. Yang, Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel, J. Mater. Eng. Perform., 2018, 7, p 3239–3247.

    Article  Google Scholar 

  40. E.I. Khlusova, A.A. Zisman, T.V. Knyazyuk and N.N. Novoskol’tsev, Effect of the Rate of Hot Compressive Deformation on the Kinetics of Dynamic and Static Recrystallization of Novel Medium-Carbon Medium-Alloy Steel, Met. Sci. Heat Treat., 2018, 11–12, p 682–688.

    Article  Google Scholar 

  41. M. Hofinger, C. Turk, M. Ognianov, H. Leitner and R. Schnitzer, Precipitation Reactions in a Cu-Ni-Al Medium Carbon Alloyed Dual Hardening Steel, Mater. Charact., 2020, 160, 110126. https://doi.org/10.1016/j.matchar.2020.110126

    Article  CAS  Google Scholar 

  42. P.P. Poletskov, M.S. Gushchina, N.V. Koptseva, O.A. Nikitenko and Y.Y. Efimova, A Study of the Effect of Nickel on Structural and Phase Transformations and Properties of High-Strength Medium-Carbon Complexly Alloyed Steel, Met. Sci. Heat Treat., 2020, 11–12, p 681–686.

    Article  Google Scholar 

Download references

Acknowledgments

Q. Yuan gratefully acknowledges the financial support from the National Nature Science Foundation of China (Grant 52004193), the China Postdoctoral Science Foundation (Grant 2020M682496), the Postdoctoral Innovative Research Post of Hubei Province and the Post-doctoral Research Funding Program of Jiangsu Province. G. Xu acknowledges the financial support from the National Nature Science Foundation of China (Grant 51874216) and the Key Project of Guangxi Autonomous Region (No. 2019AC10602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Yuan, Q., Zhang, Q. et al. Simultaneous Enhancement of Strength and Toughness in a Medium-Carbon Martensitic Steel by Ti-Mo Addition. J. of Materi Eng and Perform 31, 4273–4281 (2022). https://doi.org/10.1007/s11665-021-06537-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06537-y

Keywords

Navigation