Skip to main content
Log in

Tribological Properties and Electrical Conductivity of Carbon Nanotube-Reinforced Copper Matrix Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Carbon nanotube-reinforced copper matrix (CNT/Cu) composites were prepared by a method involving solution-aging treatment, in situ chemical vapor deposition (CVD), and spark plasma sintering (SPS). The tribological properties of the CNT/Cu composites were greatly improved, and the friction stability was better than that of Cu. These performance improvements were attributed to the uniform distribution of the CNTs without agglomeration and the strong interfacial bonding between the Cu matrix and CNTs. The coefficient of friction was 0.2, which was lower than that of pure copper (0.55), and the wear rate of the CNT/Cu composites was 2 times lower than that of pure copper. The wear mechanism was also discussed from the perspective of the wear morphology and interface structure. Furthermore, the electrical conductivity remained at a high level. The preparation technique is simple and easy to be controlled and can be used to synthesize CNT/Cu composites with excellent tribological properties and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Kato, I.Y. TakamaM, K. Washida and Y. Sasaki, Wear and Mechanical Properties of Sintered Copper-tin Composites Containing Graphite or Molybdenum Disulfide, Wear, 2003, 255, p 573–578. https://doi.org/10.1016/S0043-1648(03)00072-3

    Article  CAS  Google Scholar 

  2. A.P. Zhilyaev, A. Morozova, J.M. Cabrera, R. Kaibyshev and T.G. Langdon, Wear Resistance and Electroconductivity in a Cu-0.3Cr-0.5Zr Alloy Processed by ECAP, J. Mater. Sci., 2017, 52(1), p 305–313. https://doi.org/10.1007/s10853-016-0331-8

    Article  CAS  Google Scholar 

  3. D.B. Miracle, Metal Matrix Composites–From Science to Technological Significance, Compos. Sci. Technol., 2005, 65(15), p 2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  CAS  Google Scholar 

  4. A. Azarniya, A. Azarniya, S. Sovizi, H.R.M. Hosseini, T. Varol, A. Kawasaki and S. Ramakrishnad, Physicomechanical Properties of Spark Plasma Sintered Carbon Nanotube-Reinforced Metal Matrix Nanocomposites, Prog. Mater. Sci., 2017, 90, p 276–324. https://doi.org/10.1016/j.pmatsci.2017.07.007

    Article  CAS  Google Scholar 

  5. Z.D. Shi, J. Sheng, Z.Y. Yang, Z.Y. Liu, S. Chen, M. Wang, L.D. Wang and W.D. Fei, Facile Synthesis of High-Performance Carbon Nanosheet/Cu Composites from Copper Formate, Carbon, 2020, 165, p 349–357. https://doi.org/10.1016/j.carbon.2020.04.061

    Article  CAS  Google Scholar 

  6. F. Daneshvar, S. Tagliaferri, H. Chen, T. Zhang, C. Liu and H.J. Sue, Ultralong Electrospun Copper−Carbon Nanotube Composite Fibers for Transparent Conductive Electrodes with High Operational Stability, ACS Appl. Electron. Mater., 2020, 2, p 2692–2698. https://doi.org/10.1021/acsaelm.0c00466

    Article  CAS  Google Scholar 

  7. R. Shu, X.S. Jiang, H.L. Sun, Z.Y. Shao, T.F. Song and Z.P. Luo, Recent Researches of the Bio-Inspired Nano-Carbon Reinforced Metal Matrix Composites, Compos. A Appl. Sci. Manuf., 2020, 131, p 1–22. https://doi.org/10.1016/j.compositesa.2020.105816

    Article  CAS  Google Scholar 

  8. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), p 56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  9. S.S. Xie, W.Z. Li, Z.W. Pan, B.H. Chang and L.F. Sun, Mechanical and Physical Properties on Carbon Nanotube, J. Phys. Chem. Solids, 2000, 61(7), p 1153–1158. https://doi.org/10.1016/S0022-3697(99)00376-5

    Article  CAS  Google Scholar 

  10. C. Laurent, E. Flahaut and A. Peigney, The Weight and Density of Carbon Nanotubes versus the Number of Walls and Diameter, Carbon, 2010, 48(10), p 2994–2996. https://doi.org/10.1016/j.carbon.2010.04.010

    Article  CAS  Google Scholar 

  11. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load, Science, 2000, 287(5453), p 637–640. https://doi.org/10.1126/science.287.5453.637

    Article  CAS  Google Scholar 

  12. F. Akhlaghi and A. Zare-Bidaki, Influence of Graphite Content on the Dry Sliding and Oil Impregnated Sliding Wear Behavior of Al 2024 – Graphite Composites Produced by in situ Powder Metallurgy Method, Wear, 2009, 266(1), p 37–45. https://doi.org/10.1016/j.wear.2008.05.013

    Article  CAS  Google Scholar 

  13. A.D. Moghadam, E. Omrani, P.L. Menezes and P.K. Rohatgi, Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene–A Review, Compos. B Eng., 2015, 77, p 402–420. https://doi.org/10.1016/j.compositesb.2015.03.014

    Article  CAS  Google Scholar 

  14. A.D. Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi and N. Gupta, Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook, Jom, 2014, 66(6), p 872–881. https://doi.org/10.1007/s11837-014-0948-5

    Article  CAS  Google Scholar 

  15. X. Gao, H.Y. Yue, E.J. Guo, S.L. Zhang, L.H. Yao, X.Y. Lin, B. Wang and E.H. Guan, Tribological Properties of Copper Matrix Composites Reinforced with Homogeneously Dispersed graphene Nanosheets, J. Mater. Sci. Technol., 2018, 34(10), p 1925–1931. https://doi.org/10.1016/j.jmst.2018.02.010

    Article  CAS  Google Scholar 

  16. W. Xu, R. Hu, J.S. Li and H.Z. Fu, Effect of Electrical Current on Tribological Property of Cu matrix Composite Reinforced by Carbon Nanotubes, Trans. Nonferrous Metals Soc. China, 2011, 21(10), p 2237–2241. https://doi.org/10.1016/S1003-6326(11)61001-7

    Article  CAS  Google Scholar 

  17. W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu and X.B. Zhang, Tribological Application of Carbon Nanotubes in a Metal-based Composite Coating and Composites, Carbon, 2003, 41(2), p 215–222. https://doi.org/10.1016/S0008-6223(02)00265-8

    Article  CAS  Google Scholar 

  18. W.Z. Zhai, N. Srikanth, L.B. Kong and K. Zhou, Carbon Nanomaterials in Tribology, Carbon, 2017, 119, p 150–171. https://doi.org/10.1016/j.carbon.2017.04.027

    Article  CAS  Google Scholar 

  19. M.Y. Zhou, X.N. Qu, L.B. Ren, L.L. Fan, Y.W.X. Zhang, Y.Y. Guo, G.F. Quan, Q. Tang et al., The Effects of Carbon Nanotubes on the Mechanical and Wear Properties of AZ31 Alloy, Materials, 2017, 10(12), p 1–17. https://doi.org/10.3390/ma10121385

    Article  CAS  Google Scholar 

  20. S.R. Dong, J.P. Tu and X.B. Zhang, An Investigation of the Sliding wear Behavior of Cu-Matrix Composite Reinforced by Carbon Nanotubes, Mater. Sci. Eng. Struct. Mater. Properties Microstruct. Process., 2001, 313(1–2), p 83–87. https://doi.org/10.1016/S0921-5093(01)00963-7

    Article  Google Scholar 

  21. K.T. Kim, S. Cha and S.H. Hong, Hardness and Wear Resistance of Carbon Nanotube Reinforced Cu Matrix Nanocomposites, Mater. Sci. Eng. Struct. Mater. Properties Microstruct. Process., 2007, 449, p 46–50. https://doi.org/10.1016/j.msea.2006.02.310

    Article  CAS  Google Scholar 

  22. W. Xu, R. Hu, J.S. Li, Y.Z. Zhang and H.Z. Fu, Tribological Behavior of CNTs-Cu and Graphite-Cu Composites with Electric Current, Trans. Nonferrous Metals Soc. China, 2012, 22(1), p 78–84. https://doi.org/10.1016/S1003-6326(11)61143-6

    Article  CAS  Google Scholar 

  23. H.Y. Yue, L.H. Yao, X. Gao, S.L. Zhang, E.J. Guo, H. Zhang, X.Y. Lin and B. Wang, Effect of Ball-Milling and Graphene Contents on the Mechanical Properties and Fracture Mechanisms of Graphene Nanosheets Reinforced Copper Matrix Composites, J. Alloy. Compd., 2017, 691, p 755–762. https://doi.org/10.1016/j.jallcom.2016.08.303

    Article  CAS  Google Scholar 

  24. Ch. Guiderdoni, E. Pavlenko, V. Turq, A. Weibel, P. Puech, C. Estournès, A. Peigney, W. Bacsa et al., The Preparation of Carbon Nanotube (CNT)/Copper Composites and the Effect of the Number of CNT Walls on Their Hardness, Friction and Wear Properties, Carbon, 2013, 58, p 185–197. https://doi.org/10.1016/j.carbon.2013.02.049

    Article  CAS  Google Scholar 

  25. Z.X. Huang, Z. Zheng, S. Zhao, S.J. Dong, P. Luo and L. Chen, Copper Matrix Composites Reinforced by Aligned Carbon Nanotubes: Mechanical and Tribological Properties, Mater. Des., 2017, 133, p 570–578. https://doi.org/10.1016/j.matdes.2016.08.021

    Article  CAS  Google Scholar 

  26. R. Murugesan, M. Gopal and G. Murali, Effect of Cu, Ni Addition on the CNTs Dispersion, Wear and Thermal Expansion Behavior of Al-CNT Composites by Molecular Mixing and Mechanical Alloying, Appl. Surf. Sci., 2019, 495, 143542. https://doi.org/10.1016/j.apsusc.2019.143542

    Article  CAS  Google Scholar 

  27. Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang and S.L. Li, A Review of Multi-Physicalfields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications, Mater. Des., 2020, 191, p 1–54. https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  28. H. Wang, Z.H. Zhang, Z.Y. Hu, Q. Song, S.P. Yin and Z. Kang, Improvement of Interfacial Interaction and Mechanical Properties in Copper Matrix Composites Reinforced with Copper Coated Carbon Nanotubes, Mater. Sci. Eng. Struct. Mater. Properties Microstruct. Process., 2018, 715, p 163–173. https://doi.org/10.1016/j.msea.2018.01.005

    Article  CAS  Google Scholar 

  29. H. Wang, Z.H. Zhang, H.M. Zhang, Z.Y. Hu, S.L. Li and X.W. Cheng, Novel Synthesizing and Characterization of Copper Matrix Composites Reinforced with Carbon Nanotubes, Mater. Sci. Eng. Struct. Mater. Properties Microstruct. Process., 2017, 696, p 80–89. https://doi.org/10.1016/j.msea.2017.04.055

    Article  CAS  Google Scholar 

  30. T. Rodriguez-Suarez, J.F. Bartolome, A. Smirnov, S. Lopez-Esteban, R. Torrecillas and J.S. Moya, Sliding Wear Behaviour of Alumina/Nickel Nanocomposites Processed by a Conventional Sintering Route, J. Eur. Ceram. Soc., 2011, 31(8), p 1389–1395. https://doi.org/10.1016/j.jeurceramsoc.2011.02.011

    Article  CAS  Google Scholar 

  31. D. Nayak, N. Ray, R. Sahoo and M. Debata, Analysis of Tribological Performance of Cu Hybrid Composites Reinforced with Graphite and TiC Using Factorial Techniques, Tribol. Trans., 2014, 57(5), p 908–918. https://doi.org/10.1080/10402004.2014.923079

    Article  CAS  Google Scholar 

  32. S.M. Javadhesari, S. Alipour and M.R. Akbarpour, Microstructural Characterization and Enhanced Hardness, Wear and Antibacterial Properties of a Powder Metallurgy SiC/Ti-Cu Nanocomposite as a Potential Material for Biomedical Applications, Ceram. Int., 2019, 45(8), p 10603–10611. https://doi.org/10.1016/j.ceramint.2019.02.127

    Article  CAS  Google Scholar 

  33. S.L. Fu, X.H. Chen and P. Liu, Preparation of CNTs/Cu Composites with Good Electrical Conductivity and Excellent Mechanical Properties, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2020, 771, 138656. https://doi.org/10.1016/j.msea.2019.138656

    Article  CAS  Google Scholar 

  34. H.J. Choi, S.M. Lee and D.H. Bae, Wear Characteristic of Aluminum-Based Composites Containing Multi-Walled Carbon Nanotubes, Wear, 2010, 270(1), p 12–18. https://doi.org/10.1016/j.wear.2010.08.024

    Article  CAS  Google Scholar 

  35. G.Y. Lee, C.K.H. Dharan and R.O. Ritchie, A Physically-Based Abrasive Wear Model for Composite Materials, Wear, 2002, 252(3–4), p 322–331. https://doi.org/10.1016/S0043-1648(01)00896-1

    Article  CAS  Google Scholar 

  36. M.A. Shaik and B.R. Golla, Development of Highly Wear Resistant Cu-Al Alloys Processed via Powder Metallurgy, Tribol. Int., 2019, 136, p 127–139. https://doi.org/10.1016/j.triboint.2019.03.055

    Article  CAS  Google Scholar 

  37. Y.M. Li, Q.B. Yue, H.Y. Li and H.B. He, Friction and Wear Characteristics of 20Cr Steel Substrate and TiAlN Coating under Different Lubrication Conditions, Int. J. Precis. Eng. Manuf., 2018, 19(10), p 1521–1528. https://doi.org/10.1007/s12541-018-0179-8

    Article  Google Scholar 

  38. P.C. Tsai, Y.R. Jeng, J.T. Lee, I. Stachiv and P. Sittner, Effects of Carbon Nanotube Reinforcement and Grain Size Refinement Mechanical Properties and Wear Behaviors of Carbon Nanotube/Copper Composites, Diam. Relat. Mater., 2017, 74, p 197–204. https://doi.org/10.1016/j.diamond.2017.03.012

    Article  CAS  Google Scholar 

  39. N.S. Shaari, J.M. Said, A. Jumahat and M.H. Ismail, Wear Behaviour of Copper/Carbon Nanotubes, Ind. Lubr. Tribol., 2017, 69(3), p 342–347. https://doi.org/10.1108/ILT-09-2016-0198

    Article  Google Scholar 

  40. J.L. Li, L.J. Wang, T. He and W. Jiang, Surface Graphitization and Mechanical Properties of Hot-Pressed Bulk Carbon Nanotubes Compacted by Spark Plasma Sintering, Carbon, 2007, 45(13), p 2636–2642. https://doi.org/10.1016/j.carbon.2007.08.023

    Article  CAS  Google Scholar 

  41. A.K. Behera, R. Chandran, S. Das and A. Mallik, Wear Performance and Nanomechanical Behavior of Sonoelectroplated Cu-Graphene Nanocomposite Thin Films, J. Mater. Eng. Perform., 2021, 30(2), p 1398–1410. https://doi.org/10.1007/s11665-020-05355-y

    Article  CAS  Google Scholar 

  42. V. Testa, S. Morelli, G. Bolelli, L. Lusvarghi, S. Björklund and S. Joshi, Micromechanical Behaviour and Wear Resistance of Hybrid Plasma-Sprayed TiC Reinforced Tribaloy-400, Surf. Coat. Technol., 2021, 425, p 1–15. https://doi.org/10.1016/j.surfcoat.2021.127682

    Article  CAS  Google Scholar 

  43. F. Daneshvar, T. Zhang, A. Aziz, H.J. Sue and M.E. Welland, Tuning the Composition and Morphology of Carbon Nanotube-Copper Interface, Carbon, 2020, 157, p 583–593. https://doi.org/10.1016/j.carbon.2019.10.084

    Article  CAS  Google Scholar 

  44. X.F. Chen, J.M. Tao, J.H. Yi, C.J. Li, R. Bao, Y.C. Liu, X. You and S.L. Tan, Balancing the Strength and Ductility of Carbon Nanotubes Reinforced Copper Matrix Composites with Microlaminated Structure and Interdiffusion Interface, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2018, 712, p 790–793. https://doi.org/10.1016/j.msea.2017.12.044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB0306405), the State Key Laboratory of Advanced Optical Communication Systems and Networks (Grant No. 2018GZKF03007), and the National Natural Science Foundation of China (Grant No. 51201107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Chen, X., Liu, P. et al. Tribological Properties and Electrical Conductivity of Carbon Nanotube-Reinforced Copper Matrix Composites. J. of Materi Eng and Perform 31, 4955–4962 (2022). https://doi.org/10.1007/s11665-022-06596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06596-9

Keywords

Navigation