Skip to main content

Advertisement

Log in

Residual Stress Distribution, Phase Transformation, and Wettability Characteristics of Laser Peened Austenitic Stainless Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Laser peening without protective coating (LPwC) has been performed on austenitic stainless steel (SS304) with a power density of 9 GW cm−2 and peening passes of one, three and five. Effect of single and multiple laser peening on the residual stress distribution, work-hardening, surface roughness, phase transformation, and wettability has been studied using XRD, EBSD, surface profilometer and goniometer. A maximum compressive residual stress of - 581 MPa and work hardening depth that extended beyond 500 μm were observed with 5 peening passes. Further, an increase in austenite to martensite transformation (γ → α′) from 9.4 (unpeened) to 18.5% was observed for 5 peening passes. The average grain size reduced to 11.53% for five-time peened samples compared to single-time peened samples. Wettability studies revealed hydrophilic to hydrophobic transformation after laser peening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.P. Mouritz, Steels for Aircraft Structures, Introduction to Aerospace Materials, Elsevier, 2012, p 232-250

    Book  Google Scholar 

  2. Q. Lu, Q. Su, F. Wang, C. Zhang, Y. Lu, M. Nastasi and B. Cui, Influence of Laser Shock Peening on Irradiation Defects in Austenitic Stainless Steels, J. Nucl. Mater., 2017, 489, p 203-210. https://doi.org/10.1016/j.jnucmat.2017.03.046

    Article  CAS  Google Scholar 

  3. P. Yella, P. Venkateswarlu, R.K. Buddu, N. Ravi, K.B.S. Rao, P.P. Kiran and K.V. Rajulapati, Role of Sacrificial Layers on Surface Characteristics of Laser Shock Peened SS304 Plates, Opt. Laser Technol., 2018, 107, p 142-149. https://doi.org/10.1016/j.optlastec.2018.05.018

    Article  CAS  Google Scholar 

  4. R. Andersson, E. Schedin, C. Magnusson, J. Ocklund, and A. Persson, Stainless Steel Components in Automotive Vehicles, in Proceedings of the 4th Stainless Steel Science & Market Congress, 2002, 16(1), p 57. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-6438

  5. S. Bagheri and M. Guagliano, Review of Shot Peening Processes to Obtain Nanocrystalline Surfaces in Metal Alloys, Surf. Eng., 2009, 25(1), p 3-14.

    Article  CAS  Google Scholar 

  6. L. Xie, Y. Wen, K. Zhan, L. Wang, C. Jiang and V. Ji, Characterization on Surface Mechanical Properties of Ti-6Al-4V after Shot Peening, J. Alloys Compd., 2016, 666, p 65-70.

    Article  CAS  Google Scholar 

  7. S. Yang, W. Zeng and J. Yang, Characterization of Shot Peening Properties and Modelling on the Fatigue Performance of 304 Austenitic Stainless Steel, Int. J. Fatigue, 2020, 137, p 105621.

    Article  CAS  Google Scholar 

  8. S. Pour-Ali, A.R. Kiani-Rashid and A. Babakhani, Surface Nanocrystallization and Gradient Microstructural Evolutions in the Surface Layers of 321 Stainless Steel Alloy Treated via Severe Shot Peening, Vacuum, 2017, 144, p 152-159. https://doi.org/10.1016/j.vacuum.2017.07.016

    Article  CAS  Google Scholar 

  9. C.S. Montross, T. Wei, L. Ye, G. Clark and Y.W. Mai, Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review, Int. J. Fatigue, 2002, 24(10), p 1021-1036.

    Article  CAS  Google Scholar 

  10. A.K. Gujba and M. Medraj, Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening, Materials, 2014, 7, p 7925-7974.

    Article  Google Scholar 

  11. A.H. Clauer, Laser Shock Peening, the Path to Production, Metals (Basel), 2019, 9(6), p 626.

    Article  CAS  Google Scholar 

  12. B. Dhakal and S. Swaroop, Review: Laser Shock Peening as Post Welding Treatment Technique, J. Manuf. Process., 2018, 32(April), p 721-733. https://doi.org/10.1016/j.jmapro.2018.04.006

    Article  Google Scholar 

  13. W. Jia, Y. Zan, C. Mao, S. Li, W. Zhou, Q. Li, S. Zhang and V. Ji, Microstructure Evolution and Mechanical Properties of a Lamellar Near-α Titanium Alloy Treated by Laser Shock Peening, Vacuum, 2021, 184(Nonember 2020), p 109906. https://doi.org/10.1016/j.vacuum.2020.109906

    Article  CAS  Google Scholar 

  14. I. Altenberger, R.K. Nalla, Y. Sano, L. Wagner and R.O. Ritchie, On the Effect of Deep-Rolling and Laser-Peening on the Stress-Controlled Low- and High-Cycle Fatigue Behavior of Ti-6Al-4V at Elevated Temperatures up to 550 °C, Int. J. Fatigue, 2012, 44, p 292-302.

    Article  CAS  Google Scholar 

  15. E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier and C. Genzel, Investigation of Laser Shock Peening Effects on Residual Stress State and Fatigue Performance of Titanium Alloys, Mater. Sci. Eng. A, 2012, 536, p 82-91.

    Article  CAS  Google Scholar 

  16. P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal and V. Singh, Effect of Ultrasonic Shot Peening on Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steel, J. Mater. Eng. Perform., 2014, 23(11), p 4055-4064.

    Article  CAS  Google Scholar 

  17. Y. Feng, S. Hu, D. Wang and H. Zhang, Influence of Surface Topography and Needle Size on Surface Quality of Steel Plates Treated by Ultrasonic Peening, Vacuum, 2016, 132, p 22-30. https://doi.org/10.1016/j.vacuum.2016.07.021

    Article  CAS  Google Scholar 

  18. J. Li, A. Feng, J. Zhou, H. Chen, Y. Sun, X. Tian, Y. Huang and S. Huang, Enhancement of Fatigue Properties of 2024-T351 Aluminum Alloy Processed by Cryogenic Laser Peening, Vacuum, 2019, 164(February), p 41-45. https://doi.org/10.1016/j.vacuum.2019.02.030

    Article  CAS  Google Scholar 

  19. U. Trdan, M. Skarba and J. Grum, Laser Shock Peening Effect on the Dislocation Transitions and Grain Refinement of Al-Mg-Si Alloy, Mater. Charact., 2014, 97, p 57-68. https://doi.org/10.1016/j.matchar.2014.08.020

    Article  CAS  Google Scholar 

  20. J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen and J.W. Zhong, Grain Refinement of LY2 Aluminum Alloy Induced by Ultra-High Plastic Strain during Multiple Laser Shock Processing Impacts, Acta Mater., 2010, 58(11), p 3984-3994.

    Article  CAS  Google Scholar 

  21. C. Wang, L. Wang, C.L. Wang, K. Li and X.G. Wang, Dislocation Density-Based Study of Grain Refinement Induced by Laser Shock Peening, Opt. Laser Technol., 2020, 121, p 105827.

    Article  CAS  Google Scholar 

  22. J.E. Masse and G. Barreau, Surface Modification by Laser Induced Shock Waves, Surf. Eng., 1995, 11(2), p 131-132.

    Article  CAS  Google Scholar 

  23. L. Zhou, Y. Li, W. He, D. Chen and X. Nie, Effect of Multiple Laser Shock Processing on Microstructure and Mechanical Properties of Ti-5Al-4Mo-4Cr-2Sn-2Zr Titanium Alloy, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 2014, 43(5), p 1067-1072.

    CAS  Google Scholar 

  24. X. Shen, P. Shukla, S. Nath and J. Lawrence, Improvement in Mechanical Properties of Titanium Alloy (Ti-6Al-7Nb) Subject to Multiple Laser Shock Peening, Surf. Coat. Technol., 2017, 327, p 101-109.

    Article  CAS  Google Scholar 

  25. R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Tiwari, L.M. Kukreja and S.M. Oak, Studies on Laser Peening Using Different Sacrificial Coatings, Surf. Eng., 2012, 28(8), p 564-568.

    Article  CAS  Google Scholar 

  26. N. Mukai, N. Aoki, M. Obata, A. Ito, Y. Sano, and C. Konagai, Laser Processing for Underwater Maintenance in Nuclear Plants, in 3rd JSME/ASME Joint International Conference on Nuclear Engineering, 1995, p 1489-1494. https://inis.iaea.org/search/search.aspx?orig_q=RN:38008928. Accessed 11 March 2020

  27. Y. Sano, K. Akita, K. Masaki, Y. Ochi, I. Altenberger and B. Scholtes, Laser Peening Without Coating as a Surface Enhancement Technology, J. Laser Micro Nanoeng., 2006, 1(3), p 161-166.

    Article  CAS  Google Scholar 

  28. B. Sarre, S. Flouriot, G. Geandier, B. Panicaud and V. De Rancourt, Mechanical Behavior and Fracture Mechanisms of Titanium Alloy Welded Joints Made by Pulsed Laser Beam Welding, Proc. Struct. Integr., 2016, 2, p 3569-3576.

    Google Scholar 

  29. Y. Sano, K. Masaki, T. Gushi and T. Sano, Improvement in Fatigue Performance of Friction Stir Welded A6061-T6 Aluminum Alloy by Laser Peening Without Coating, Mater. Des., 2012, 36, p 809-814. https://doi.org/10.1016/j.matdes.2011.10.053

    Article  CAS  Google Scholar 

  30. D. Kumar, S. Nadeem Akhtar, A. Kumar Patel, J. Ramkumar and K. Balani, Tribological Performance of Laser Peened Ti-6Al-4V, Wear, 2015, 322-323, p 203-217.

    Article  CAS  Google Scholar 

  31. U. Trdan and J. Grum, SEM/EDS Characterization of Laser Shock Peening Effect on Localized Corrosion of Al Alloy in a Near Natural Chloride Environment, Corros. Sci., 2014, 82, p 328-338.

    Article  CAS  Google Scholar 

  32. P. Peyre, R. Fabbro, P. Merrien and H.P. Lieurade, Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour, Mater. Sci. Eng. A, 1996, 210(1-2), p 102-113.

    Article  Google Scholar 

  33. A.H. Clauer and D.F. Lahrman, Laser Shock Processing as a Surface Enhancement Process, Key Eng. Mater., 2001, 197, p 121-142.

    Article  CAS  Google Scholar 

  34. C. Wang, L. Wang, C.L. Wang, K. Li and X.G. Wang, Dislocation Density-Based Study of Grain Refinement Induced by Laser Shock Peening, Opt. Laser Technol., 2019, 2020, p 121.

    Google Scholar 

  35. H. Ding and Y.C. Shin, Dislocation Density-Based Modeling of Subsurface Grain Refinement with Laser-Induced Shock Compression, Comput. Mater. Sci., 2012, 53(1), p 79-88.

    Article  CAS  Google Scholar 

  36. A. Umapathi and S. Swaroop, Residual Stress Distribution in a Laser Peened Ti-2.5Cu Alloy, Surf. Coat. Technol., 2016, 307, p 38-46. https://doi.org/10.1016/j.surfcoat.2016.08.053

    Article  CAS  Google Scholar 

  37. D. Karthik, K.U. Yazar, A. Bisht, S. Swaroop, C. Srivastava and S. Suwas, Gradient Plastic Strain Accommodation and Nanotwinning in Multi-pass Laser Shock Peened 321 Steel, Appl. Surf. Sci., 2019, 487(May), p 426-432. https://doi.org/10.1016/j.apsusc.2019.05.130

    Article  CAS  Google Scholar 

  38. O. Hatamleh and A. DeWald, An Investigation of the Peening Effects on the Residual Stresses in Friction Stir Welded 2195 and 7075 Aluminum Alloy Joints, J. Mater. Process. Technol., 2009, 209(10), p 4822-4829.

    Article  CAS  Google Scholar 

  39. H. Chen, A. Feng, J. Li, T. Jia and Y. Liu, Effects of Multiple Laser Peening Impacts on Mechanical Properties and Microstructure Evolution of 40CrNiMo Steel, J. Mater. Eng. Perform., 2019, 28(5), p 2522-2529. https://doi.org/10.1007/s11665-019-04034-x

    Article  CAS  Google Scholar 

  40. X.C. Zhang, Y.K. Zhang, J.Z. Lu, F.Z. Xuan, Z.D. Wang and S.T. Tu, Improvement of Fatigue Life of Ti-6Al-4V Alloy by Laser Shock Peening, Mater. Sci. Eng. A, 2010, 527(15), p 3411-3415. https://doi.org/10.1016/j.msea.2010.01.076

    Article  CAS  Google Scholar 

  41. J. Li, J. Zhou, A. Feng, S. Huang, X. Meng, Y. Sun, Y. Huang and X. Tian, Influence of Multiple Laser Peening on Vibration Fatigue Properties of TC6 Titanium Alloy, Opt. Laser Technol., 2019, 118, p 183-191.

    Article  CAS  Google Scholar 

  42. J.Z. Lu, K.Y. Luo, Y.K. Zhang, G.F. Sun, Y.Y. Gu, J.Z. Zhou, X.D. Ren, X.C. Zhang, L.F. Zhang, K.M. Chen, C.Y. Cui, Y.F. Jiang, A.X. Feng and L. Zhang, Grain Refinement Mechanism of Multiple Laser Shock Processing Impacts on ANSI 304 Stainless Steel, Acta Mater., 2010, 58(16), p 5354-5362.

    Article  CAS  Google Scholar 

  43. C. Ye, S. Suslov, D. Lin and G.J. Cheng, Deformation-Induced Martensite and Nanotwins by Cryogenic Laser Shock Peening of AISI 304 Stainless Steel and the Effects on Mechanical Properties, Philos. Mag., 2012, 92(11), p 1369-1389.

    Article  CAS  Google Scholar 

  44. Y. Yang, X. Lian, K. Zhou and G. Li, Effects of Laser Shock Peening on Microstructures and Properties of 2195 Al-Li Alloy, J. Alloys Compd., 2019, 781, p 330-336. https://doi.org/10.1016/j.jallcom.2018.12.118

    Article  CAS  Google Scholar 

  45. S. Sathyajith, S. Kalainathan and S. Swaroop, Laser Shot Peening of 304 Austenitic Stainless Steel Without Protective Coating, Mater. Sci. Forum, 2011, 699, p 131-140.

    Article  CAS  Google Scholar 

  46. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1-2), p 334-340.

    Article  CAS  Google Scholar 

  47. I. Nikitin, B. Scholtes, H.J. Maier and I. Altenberger, High Temperature Fatigue Behavior and Residual Stress Stability of Laser-Shock Peened and Deep Rolled Austenitic Steel AISI 304, Scr. Mater., 2004, 50(10), p 1345-1350.

    Article  CAS  Google Scholar 

  48. Z. Lu, F. Xu, C. Tang, Y. Cui, H. Xu and J. Mao, Stress Corrosion Cracking Susceptibility of 304 Stainless Steel Subjected to Laser Shock Peening Without Coating, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05898-8

    Article  Google Scholar 

  49. A. Nakajima, K. Hashimoto and T. Watanabe, Recent Studies on Super-Hydrophobic Films, Monatshefte für Chemie/Chem. Mon., 2001, 132(1), p 31-41. https://doi.org/10.1007/s007060170142

    Article  CAS  Google Scholar 

  50. Y.B. Wang, H.F. Li, Y.F. Zheng, S.C. Wei and M. Li, Correlation Between Corrosion Performance and Surface Wettability in ZrTiCuNiBe Bulk Metallic Glasses, Appl. Phys. Lett., 2010, 96(25), p 8-11.

    Google Scholar 

  51. T. Sasaki, M. Shin-ya, S. Mitsui, R. Nishimura, K. Yanagi, T. Miyoshi and Y. Arai, X-ray Tri-Axial Stress Analysis System Using Two Monolithic SOI Pixel Detectors, Nucl. Instrum. Methods Phys. Res. section A Accel. Spectrom. Detect. Assoc. Equip., 2020, 979, p 164426.

    Article  CAS  Google Scholar 

  52. K.Y. Luo, J.Z. Lu, Y.K. Zhang, J.Z. Zhou, L.F. Zhang, F.Z. Dai, L. Zhang, J.W. Zhong and C.Y. Cui, Effects of Laser Shock Processing on Mechanical Properties and Micro-structure of ANSI 304 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2011, 528(13-14), p 4783-4788.

    Article  CAS  Google Scholar 

  53. P.R. Smith, M.J. Shepard, P.S. Prevéy and A.H. Clauer, Effect of Power Density and Pulse Repetition on Laser Shock Peening of Ti-6Al-4V, J. Mater. Eng. Perform., 2000, 9(1), p 33-37.

    Article  CAS  Google Scholar 

  54. Z. Tong, X. Ren, Y. Ren, F. Dai, Y. Ye, W. Zhou, L. Chen and Z. Ye, Effect of Laser Shock Peening on Microstructure and Hot Corrosion of TC11 Alloy, Surf. Coat. Technol., 2018, 335, p 32-40.

    Article  CAS  Google Scholar 

  55. D. Karthik and S. Swaroop, Laser Peening without Coating Induced Phase Transformation and Thermal Relaxation of Residual Stresses in AISI 321 Steel, Surf. Coat. Technol., 2016, 291, p 161-171. https://doi.org/10.1016/j.surfcoat.2016.02.038

    Article  CAS  Google Scholar 

  56. B.D. Cullity, Elements of X-ray Diffraction, Addison Wesley Publishing, Reading, MA, 1956, p 99

    Google Scholar 

  57. E. Nagy, V. Mertinger, F. Tranta and J. Sólyom, Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Eng. A, 2004, 378(1-2 SPEC. ISS.), p 308-313.

    Article  CAS  Google Scholar 

  58. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer and D.K. Matlock, Quantitative Measurement of Deformation-Induced Martensite in 304 Stainless Steel by X-ray Diffraction, Scr. Mater., 2004, 50(12), p 1445-1449.

    Article  CAS  Google Scholar 

  59. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang and L. Zuo, Twinning and Martensite in a 304 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 552, p 514-522.

    Article  CAS  Google Scholar 

  60. M. Turski, S. Clitheroe, A.D. Evans, C. Rodopoulos, D.J. Hughes and P.J. Withers, Engineering the Residual Stress State and Microstructure of Stainless Steel with Mechanical Surface Treatments, Appl. Phys. A Mater. Sci. Process., 2010, 99(3), p 549-556.

    Article  CAS  Google Scholar 

  61. M. Gerland and M. Hallouin, Effect of Pressure on the Microstructure of an Austenitic Stainless Steel Shock-Loaded by Very Short Laser Pulses, J. Mater. Sci., 1994, 29(2), p 345-351.

    Article  CAS  Google Scholar 

  62. I. Nikitin and I. Altenberger, Comparison of the Fatigue Behavior and Residual Stress Stability of Laser-Shock Peened and Deep Rolled Austenitic Stainless Steel AISI 304 in the Temperature Range 25-600 °C, Mater. Sci. Eng. A, 2007, 465(1-2), p 176-182.

    Article  CAS  Google Scholar 

  63. B.N. Mordyuk, Y.V. Milman, M.O. Iefimov, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko and A.V. Kotko, Characterization of Ultrasonically Peened and Laser-Shock Peened Surface Layers of AISI 321 Stainless Steel, Surf. Coat. Technol., 2008, 202(19), p 4875-4883.

    Article  CAS  Google Scholar 

  64. S. Kalainathan, S. Sathyajith and S. Swaroop, Effect of Laser Shot Peening Without Coating on the Surface Properties and Corrosion Behavior of 316L Steel, Opt. Lasers Eng., 2012, 50(12), p 1740-1745. https://doi.org/10.1016/j.optlaseng.2012.07.007

    Article  Google Scholar 

  65. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger and C. Lemaitre, Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance, Mater. Sci. Eng. A, 2000, 280(2), p 294-302.

    Article  Google Scholar 

  66. B. Dhakal and S. Swaroop, Effect of Laser Shock Peening on Mechanical and Microstructural Aspects of 6061-T6 Aluminum Alloy, J. Mater. Process. Technol., 2020, 282, p 116640.

    Article  CAS  Google Scholar 

  67. G.E. Dieter, Mechanical Metallurgy, McGRAW-Hill Book Company, New York, 1961, p 447-459

    Google Scholar 

  68. L. Zhou, W. He, S. Luo, C. Long, C. Wang, X. Nie, G. He, X. Shen and Y. Li, Laser Shock Peening Induced Surface Nanocrystallization and Martensite Transformation in Austenitic Stainless Steel, J. Alloys Compd., 2016, 655, p 66-70. https://doi.org/10.1016/j.jallcom.2015.06.268

    Article  CAS  Google Scholar 

  69. K.Y. Luo, H.X. Yao, F.Z. Dai and J.Z. Lu, Surface Textural Features and Its Formation Process of AISI 304 Stainless Steel Subjected to Massive LSP Impacts, Opt. Lasers Eng., 2014, 55, p 136-142.

    Article  Google Scholar 

  70. M.J.J.P.T. NovelliFundenbergerBocherGrosdidier, On the Effectiveness of Surface Severe Plastic Deformation by Shot Peening at Cryogenic Temperature, Appl. Surf. Sci., 2016, 389, p 1169-1174.

    Article  CAS  Google Scholar 

  71. Y. Zou, Z. Sang, Q. Wang, T. Li, D. Li and Y. Li, Improving the Mechanical Properties of 304 Stainless Steel Using Waterjet Peening, Medziagotyra, 2020, 26(2), p 161-167.

    Google Scholar 

  72. S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla and V.K. Vasudevan, Laser Shock Peening Without Coating Induced Residual Stress Distribution, Wettability Characteristics and Enhanced Pitting Corrosion Resistance of Austenitic Stainless Steel, Appl. Surf. Sci., 2018, 428, p 17-30. https://doi.org/10.1016/j.apsusc.2017.09.138

    Article  CAS  Google Scholar 

  73. B.S. Yilbas, H. Ali, A. Al-Sharafi and H. Al-Qahtani, Laser Processing of Ti6Al4V Alloy: Wetting State of Surface and Environmental Dust Effects, Heliyon, 2019, 5(2), p e01211.

    Article  CAS  Google Scholar 

  74. P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard, E. de Los Rios and R. Fabbro, New Trends in Laser Shock Wave Physics and Applications, High-Power Laser Ablation IV, 2002, 4760, p 654-666.

    Article  CAS  Google Scholar 

  75. P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaitre and D. Stuart, Influence of Thermal and Mechanical Surface Modifications Induced by Laser Shock Processing on the Initiation of Corrosion Pits in 316L Stainless Steel, J. Mater. Sci., 2007, 42(16), p 6866-6877.

    Article  CAS  Google Scholar 

  76. D. Karthik and S. Swaroop, Laser Shock Peening Enhanced Corrosion Properties in a Nickel Based Inconel 600 Superalloy, J. Alloys Compd., 2017, 694, p 1309-1319.

    Article  CAS  Google Scholar 

  77. M.A. Meyers, Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel, Acta Mater., 2003, 571, p 571-574.

    Google Scholar 

  78. V.K. Caralapatti and S. Narayanswamy, Analyzing the Effect of High Repetition Laser Shock Peening on Dynamic Corrosion Rate of Magnesium, Opt. Laser Technol., 2017, 93, p 165-174. https://doi.org/10.1016/j.optlastec.2017.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aeronautics R&D Board, India for the financial support (Grant No. ARDB/GTMAP/01/2031839/M/I), Vellore Institute of Technology (VIT), Vellore for the infrastructure and constant support throughout the project and Sophisticated Analytical Instrument Facility (SAIF) at IIT-Bombay for EBSD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetha Manivasagam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveenkumar, K., Swaroop, S. & Manivasagam, G. Residual Stress Distribution, Phase Transformation, and Wettability Characteristics of Laser Peened Austenitic Stainless Steel. J. of Materi Eng and Perform 31, 6846–6857 (2022). https://doi.org/10.1007/s11665-022-06748-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06748-x

Keywords

Navigation