Skip to main content
Log in

The Effect of Bainite Volume Fraction on Wear Behavior of AISI 4340 Ferrite–Bainite Dual-Phase Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The tribological behaviors of an AISI 4340 ferritic-bainitic dual-phase steel with different bainite (VB) content were investigated. The effects of VB on wear resistance and the corresponding wear mechanisms were investigated using a pin-on-disk wear testing machine, at normal loads of 10 and 50 N, at a constant sliding velocity. The tensile and hardness tests showed that the yield strength, ultimate tensile strength, and hardness increased with increasing the VB. The wear test results at the 10 N normal load showed a direct correlation between the tensile and tribological behavior of the samples. Nevertheless, at the normal load of 50 N, unexpected behavior was observed due to the carbon content of the hard sub-structure and the occurrence of a transition in wear mechanisms. Indeed, for the normal load of 10 N, there is a correlation between the work hardening exponent and strength coefficient versus wear rate. In contrast, no direct correlation was observed at the normal load of 50 N. Moreover, scanning electron microscopy studies showed that the plowing and delamination wear mechanisms were predominant at the normal load of 10 N. Contrariwise, the adhesive wear mechanism increased dramatically by increasing the normal load to 50 N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Fonstein, Advanced High Strength Sheet Steels, Springer, New York, 2015.

    Google Scholar 

  2. R. Rana and S.B. Singh, Automotive Steels: Design, Metallurgy, Processing and Applications, Woodhead Publishing, Sawston, 2016.

    Google Scholar 

  3. J. Zhao and Z. Jiang, Thermomechanical Processing of Advanced High Strength Steels, Prog. Mater. Sci., 2018, 94, p 174–242.

    Google Scholar 

  4. M. Delincé, Y. Bréchet, J.D. Embury, M.G.D. Geers, P.J. Jacques, and T. Pardoen, Structure–Property Optimization of Ultrafine-Grained Dual-Phase Steels Using a Microstructure-Based Strain Hardening Model, Acta Mater., 2007, 55(7), p 2337–2350.

    Google Scholar 

  5. F. Jamei, H. Mirzadeh, and M. Zamani, Synergistic Effects of Holding Time at Intercritical Annealing Temperature and Initial Microstructure on the Mechanical Properties of Dual Phase Steel, Mater. Sci. Eng. A, 2019, 750, p 125–131.

    Google Scholar 

  6. Y. Granbom, Structure and Mechanical Properties of Dual Phase Steels: An Experimental and Theoretical Analysis, KTH Royal Institute of Technology, 2010.

  7. A. Zare and A. Ekrami, Effect of Martensite Volume Fraction on Work Hardening Behavior of Triple Phase (TP) Steels, Mater. Sci. Eng. A, 2011, 528(13–14), p 4422–4426.

    Google Scholar 

  8. S.K. Akay, M. Yazici, A. Bayram, and A. Avinc, Fatigue Life Behaviour of the Dual-Phase Low Carbon Steel Sheets, J. Mater. Process. Technol., 2009, 209(7), p 3358–3365.

    Google Scholar 

  9. K. Holmberg and A. Erdemir, Global Impact of Friction on Energy Consumption, Economy and Environment, FME Trans., 2015, 43(3), p 181–185.

    Google Scholar 

  10. K. Holmberg and A. Erdemir, Influence of Tribology on Global Energy Consumption, Costs and Emissions, Friction, 2017, 5(3), p 263–284.

    Google Scholar 

  11. X. Yan, J. Hu, H. Yu, C. Wang, and W. Xu, Unraveling the Significant Role of Retained Austenite on the Dry Sliding Wear Behavior of Medium Manganese Steel, Wear, 2021, 476, p 203745.

    Google Scholar 

  12. C. Carboga, B. Aktas, and B. Kurt, Dry Sliding Wear Behavior of Boron-Doped 205 Manganese Steels, J. Mater. Eng. Perform., 2020, 29(5), p 3120–3126.

    Google Scholar 

  13. B. Aktas, V. Balak, and C. Carboga, Dry Sliding Wear Behavior of Boron-Doped AISI 1020 Steels, Acta Phys. Pol. A, 2017, 132(3), p 455–457.

    Google Scholar 

  14. C. Dayot, A. Saulot, C. Godeau, and Y. Berthier, Tribological Behaviour of Pearlitic and Bainitic Steel Grades under Various Sliding Conditions, Tribol. Int., 2012, 46(1), p 128–136.

    Google Scholar 

  15. Á. Kalácska, L. Székely, R.Z. Keresztes, A. Gábora, T. Mankovits, and P. De Baets, Abrasive Sensitivity of Martensitic and a Multi-Phase Steels under Different Abrasive Conditions, Materials (Basel), 2021, 14(6), p 1343.

    Google Scholar 

  16. Y. Wang, T. Lei, and J. Liu, Tribo-Metallographic Behavior of High Carbon Steels in Dry Sliding, Wear, 2010, 231(1), p 12–19.

    Google Scholar 

  17. N. Khanafi-Benghalem, E. Felder, K. Loucif, and P. Montmitonnet, Plastic Deformation of 25CrMo4 Steel during Wear: Effect of the Temperature, the Normal Force, the Sliding Velocity and the Structural State, Wear, 2010, 268(1–2), p 23–40.

    Google Scholar 

  18. J. Liu, Y. Li, Y. Zhang, Y. Hu, L. Shi, H. Ding, W. Wang, F. Liu, S. Zhou, and T. Shi, Dry Rolling/Sliding Wear of Bainitic Rail Steels under Different Contact Stresses and Slip Ratios, Materials (Basel), 2020, 13(20), p 4678.

    Google Scholar 

  19. V. Panin, A. Kolubaev, S. Tarasov, and V. Popov, Subsurface Layer Formation during Sliding Friction, Wear, 2001, 249(10–11), p 860–867.

    Google Scholar 

  20. J.R. Fleming and N.P. Suh, Mechanics of Crack Propagation in Delamination Wear, Wear, 1977, 44(1), p 39–56.

    Google Scholar 

  21. S. Jahanmir and N.P. Suh, Mechanics of Subsurface Void Nucleation in Delamination Wear, Wear, 1977, 44(1), p 17–38.

    Google Scholar 

  22. G. Zakharov, N. Khidasheli, Z. Aslamazashvili, G. Gordeziani, M. Chikhradze, S. Gvazava, and I. Maisuradze, Wear Behaviour of Austempered, Ductile Iron Microalloyed with Boron under Different Contact Load by Dry Sliding Wear Conditions, IOP Conf. Ser. Mater. Sci. Eng., 2021, 1190(1), p 012004.

    Google Scholar 

  23. C. Trevisiol, A. Jourani, and S. Bouvier, Effect of Microstructures with the Same Chemical Composition and Similar Hardness Levels on Tribological Behavior of a Low Alloy Steel, Tribol. Int., 2018, 127, p 389–403.

    Google Scholar 

  24. C. Trevisiol, A. Jourani, and S. Bouvier, Effect of Martensite Morphology on Tribological Behaviour of a Low-Alloy Steel, Metallogr. Microstruct. Anal., 2019, 8(1), p 123–134.

    Google Scholar 

  25. O. Ríos-Diez, R. Aristizábal-Sierra, C. Serna-Giraldo, A. Eres-Castellanos, and C. García-Mateo, Wear Behavior of Nanostructured Carbo-Austempered Cast Steels under Rolling-Sliding Conditions, J. Mater. Res. Technol., 2021, 11, p 1343–1355.

    Google Scholar 

  26. X. Xu, S. van der Zwaag, and W. Xu, The Effect of Martensite Volume Fraction on the Scratch and Abrasion Resistance of a Ferrite–Martensite Dual Phase Steel, Wear, 2016, 348–349, p 80–88.

    Google Scholar 

  27. X. Qiu, X. Wei, X. Xu, W. Xu, and M. Zhu, Dependence of Fretting Wear Resistance on Microstructural Features of Alloyed Steels, Tribol. Int., 2019, 137, p 39–45.

    Google Scholar 

  28. S. Bhowmick and B.K. Show, Effect of Prior Heat Treatment on Wear Behaviour of 0·23% Carbon Dual Phase Steel, Can. Metall. Q., 2014, 53(1), p 93–99.

    Google Scholar 

  29. C. Trevisiol, A. Jourani, and S. Bouvier, Effect of Martensite Volume Fraction and Abrasive Particles Size on Friction and Wear Behaviour of a Low Alloy Steel, Tribol. Int., 2017, 113, p 411–425.

    Google Scholar 

  30. X. Xu, S. van der Zwaag, and W. Xu, The Effect of Ferrite–Martensite Morphology on the Scratch and Abrasive Wear Behaviour of a Dual Phase Construction Steel, Wear, 2016, 348–349(1), p 148–157.

    Google Scholar 

  31. W. Yan, L. Fang, K. Sun, and Y. Xu, Effect of Surface Work Hardening on Wear Behavior of Hadfield Steel, Mater. Sci. Eng. A, 2007, 460–461, p 542–549.

    Google Scholar 

  32. M. Lindroos, M. Apostol, V. Heino, K. Valtonen, A. Laukkanen, K. Holmberg, and V.-T. Kuokkala, The Deformation, Strain Hardening, and Wear Behavior of Chromium-Alloyed Hadfield Steel in Abrasive and Impact Conditions, Tribol. Lett., 2015, 57(3), p 24.

    Google Scholar 

  33. K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J. Iron Steel Inst., 1965, 203, p 721–727.

    Google Scholar 

  34. H.K.D.H. Bhadeshia, “Materials Algorithms Project” [Online]. http://www.phase-trans.msm.cam.ac.uk/map/steel/programs/mucg83.html.

  35. “ASTM A370-18", Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, 2018

  36. “ASTM G99-17", Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, 2017

  37. V.S. Hariharan, Phase Fraction Calculation of Microstructure Using ImageJ, Res. Gate, 2018, 12, p 17.

    Google Scholar 

  38. H. Zakerinia, A. Kermanpur, and A. Najafizadeh, Color Metallography; A Suitable Method for Characterization of Martensite and Bainite in Multiphase Steels, Int. J. Iron Steel Soc. Iran, 2009, 6(1), p 14–18.

    Google Scholar 

  39. H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice, CRC Press, New York, 2018, p 1689–1699

    Google Scholar 

  40. R. Bakhtiari and A. Ekrami, The Effect of Bainite Morphology on the Mechanical Properties of a High Bainite Dual Phase (HBDP) Steel, Mater. Sci. Eng. A, 2009, 525(1–2), p 159–165.

    Google Scholar 

  41. M.R. Akbarpour and A. Ekrami, Effect of Ferrite Volume Fraction on Work Hardening Behavior of High Bainite Dual Phase (DP) Steels, Mater. Sci. Eng. A, 2008, 477(1–2), p 306–310.

    Google Scholar 

  42. J. Zrnik, I. Mamuzic, and S.V. Dobatkin, Recent Progress in High Strength Low Carbon Steels, Metalurgija, 2006, 45(4), p 323–331.

    Google Scholar 

  43. A. Zare and A. Ekrami, Influence of Martensite Volume Fraction on Tensile Properties of Triple Phase Ferrite–Bainite–Martensite Steels, Mater. Sci. Eng. A, 2011, 530(1), p 440–445.

    Google Scholar 

  44. T.S. Byun and I.S. Kim, Tensile Properties and Inhomogeneous Deformation of Ferrite-Martensite Dual-Phase Steels, J. Mater. Sci., 1993, 28(11), p 2923–2932.

    Google Scholar 

  45. M.R. Akbarpour and A. Ekrami, Effect of Temperature on Flow and Work Hardening Behavior of High Bainite Dual Phase (HBDP) Steels, Mater. Sci. Eng. A, 2008, 475(1–2), p 293–298.

    Google Scholar 

  46. J.H. Hollomon, Tensile Deformation, Trans. Metall. Soc. AIME, 1945, 162, p 268–290.

    Google Scholar 

  47. M. Pouranvari, Work Hardening Behavior of Fe-0.1 C Dual Phase Steel, BHM Berg- Huettenmaenn. Monatsh., 2012, 157(1), p 44–47.

    Google Scholar 

  48. Z. Zhao, X. Wang, G. Qiao, S. Zhang, B. Liao, and F. Xiao, Effect of Bainite Morphology on Deformation Compatibility of Mesostructure in Ferrite/Bainite Dual-Phase Steel: Mesostructure-Based Finite Element Analysis, Mater. Des., 2019, 180, p 107870.

    Google Scholar 

  49. J.J. Coronado and A. Sinatora, Effect of Abrasive Size on Wear of Metallic Materials and Its Relationship with Microchips Morphology and Wear Micromechanisms: Part 1, Wear, 2011, 271(9–10), p 1794–1803.

    Google Scholar 

  50. R. Tyagi, S.K. Nath, and S. Ray, Effect of Martensite Content on Friction and Oxidative Wear Behavior of 0.42 Pct Carbon Dual-Phase Steel, Metall. Mater. Trans. A, 2002, 33(11), p 3479–3488.

    Google Scholar 

  51. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988.

    Google Scholar 

  52. P. Suh, The Delamination Theory of Wear, Wear, 1973, 25(1), p 111–124.

    Google Scholar 

  53. H. Saghafian and S. Kheirandish, Correlating Microstructural Features with Wear Resistance of Dual Phase Steel, Mater. Lett., 2007, 61(14–15), p 3059–3063.

    Google Scholar 

  54. V. Abouei, H. Saghafian, and S. Kheirandish, Dry Sliding Oxidative Wear in Plain Carbon Dual Phase Steel, J. Iron Steel Res. Int., 2007, 14(4), p 43–48.

    Google Scholar 

  55. C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, and D. Raabe, Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-Situ Deformation Experiments and Crystal Plasticity Simulations, Int. J. Plast., 2014, 63, p 198–210.

    Google Scholar 

  56. M. Soliman and H. Palkowski, Strain Hardening Dependence on the Structure in Dual-Phase Steels, Steel Res. Int., 2021, 92, p 4.

    Google Scholar 

  57. D.V. De Pellegrin, A.A. Torrance, and E. Haran, Wear Mechanisms and Scale Effects in Two-Body Abrasion, Wear, 2009, 266(1–2), p 13–20.

    Google Scholar 

  58. I.A. Inman, P.K. Datta, H.L. Du, J.S. Burnell-Gray, S. Pierzgalski, and Q. Luo, Studies of High Temperature Sliding Wear of Metallic Dissimilar Interfaces, Tribol. Int., 2005, 38(9), p 812–823.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Ekrami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarpour, M., Ekrami, A. The Effect of Bainite Volume Fraction on Wear Behavior of AISI 4340 Ferrite–Bainite Dual-Phase Steel. J. of Materi Eng and Perform 31, 8687–8698 (2022). https://doi.org/10.1007/s11665-022-06905-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06905-2

Keywords

Navigation