Skip to main content
Log in

Influence of Regulated Metal Deposition and Gas Metal Arc Welding on ASTM A387-11–2 Steel Plates: As-deposited Inspection, Microstructure, and Mechanical Properties

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, 6-mm-thick ASTM A387-11–2 steel plates have been butt welded at optimized parametric settings of current (A) = 100 A, voltage (V) = 13 V, and gas flow rate (GFR) = 21 L/min. The as-welded plates have been visually inspected for any surface defects and were found to be defect-free. Further, the weldments were subjected to macroscopic metallography to explore the weld bead geometry. Macroscopic results reveal that the RMD process produces a higher depth of penetration (DOP) and lower heat-affected zone (HAZ) as compared to the GMAW process. Optical and scanning electron microscopy have also been done to examine the internal microstructure in the weldments. The result of microscopic analysis reveals the presence of pearlite and ferrite in the base metal. The process of grain refinement in the heat-affected zone and weld zone was also observed in the form of fine-grain particles which confirms the presence of martensite in the weld zone. In addition to this, the microhardness values for both weldments were measured and compared. The microhardness of GMA weldments was found to be too high in all the zones as compared to that of RMD weldments and hence gives the affirmation with the obtained microstructures in the welded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.J. Vora and V.J. Badheka, Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel, Int. J. Adv. Mech. Automobile Eng., 2016, 3, p 75–79.

    Google Scholar 

  2. A. Koprivica, D. Bajić, N. Šibalić, and M. Vukčević, Analysis of welding of aluminium alloy AA6082-T6 by TIG, MIG and FSW processes from technological and economic aspect Analysis of welding of aluminium alloy AA6082-T6 by TIG, MIG and FSW processes from technological and economic aspect, Mach. Technol. Mater., 2020, 5, p 194–198.

  3. D. Patel and S. Jani, Techniques to Weld Similar and Dissimilar Materials by ATIG Welding - An Overview, Mater. Manuf. Processes, 2021, 36, p 1–16. https://doi.org/10.1080/10426914.2020.1802040

    Article  CAS  Google Scholar 

  4. F. Rubino, H. Parmar, V. Esperto and P. Carlone, Ultrasonic Welding of Magnesium Alloys: A Review, Mater. Manuf. Processes, 2020, 35, p 1051–1068. https://doi.org/10.1080/10426914.2020.1758330

    Article  CAS  Google Scholar 

  5. S. Mandal, S. Joarder, S.M. Murmu, J.J. Tudu, V. Subba and S. Das, Effects of Some Process Parameters on Weld Bead a Brief Investigation, Indian Sci. Cruiser, 2020, 34, p 29–35. https://doi.org/10.24906/isc/2020/v34/i2/196422

    Article  Google Scholar 

  6. S.W. Campbell, A.M. Galloway and N.A. McPherson, Techno-Economic Evaluation on the Effects of Alternating Shielding Gases for Advanced Joining Processes, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2011, 225(10), p 1863–1872. https://doi.org/10.1177/0954405411408353

    Article  CAS  Google Scholar 

  7. Dinbandhu, V. Prajapati, J.J. Vora, S. Das and K. Abhishek, Experimental studies of Regulated Metal Deposition (RMDTM) on ASTM A387 (11) Steel: Study of Parametric Influence and Welding Performance Optimization, J. Braz. Soc. Mech. Sci. Eng., 2020, 42, p 1–21. https://doi.org/10.1007/s40430-019-2155-3

    Article  CAS  Google Scholar 

  8. A. Rout, D. BBVL, B.B. Biswal, Optimization of process variables of laser sensor assisted robotic GMAW process for mild steel material Mater. Manuf. Processes. (2020) https://doi.org/10.1080/10426914.2020.1784934

  9. D. Bandhu, S. Kumari, V. Prajapati, K.K. Saxena and K. Abhishek, Experimental Investigation and Optimization of RMD™ Welding Parameters for ASTM A387 Grade 11 Steel, Mater. Manuf. Processes, 2021, 36, p 1524–1534. https://doi.org/10.1080/10426914.2020.1854472

    Article  CAS  Google Scholar 

  10. V. Prajapati, Dinbandhu, J.J. Vora, S. Das and K. Abhishek, Study of Parametric Influence and Welding Performance Optimization During Regulated Metal Deposition (RMDTM) Using Grey Integrated with Fuzzy Taguchi Approach, J. Manuf. Processes., 2020, 54, p 286–300. https://doi.org/10.1016/j.jmapro.2020.03.017

    Article  Google Scholar 

  11. P. Sharma and D.K. Dwivedi, Comparative Study of Activated Flux-GTAW and Multipass-GTAW Dissimilar P92 Steel-304H ASS Joints, Mater. Manuf. Processes, 2019, 34, p 1195–1204. https://doi.org/10.1080/10426914.2019.1605175

    Article  CAS  Google Scholar 

  12. H. Kumar, G.N. Ahmad and N.K. Singh, Activated Flux TIG Welding of Inconel 718 Super Alloy in Presence of Tri-Component Flux, Mater. Manuf. Processes, 2019, 34, p 216–223. https://doi.org/10.1080/10426914.2018.1532581

    Article  CAS  Google Scholar 

  13. M. Horvat, V. Kondić and D. Brezovečki, Teorijske i praktične osnove TIG postupka zavarivanja, Tehnički, Glasnik, 2014, 8, p 426–432.

    Google Scholar 

  14. N. Šibalić, M. Vukčević, Research on the Quality of the Welded Joint of Aluminium Alloy Sheet AA6082-T6 Using FSW, MIG and TIG Methods, Materiali in Tehnologije. 53: 711–715 (2019). https://doi.org/10.17222/mit.2018.224

  15. S.W. Shyu, H.Y. Huang, K.H. Tseng and C.P. Chou, Study of the Performance of Stainless Steel A-TIG Welds, J. Mater. Eng. Perform., 2008 https://doi.org/10.1007/s11665-007-9139-7

    Article  Google Scholar 

  16. Cynthia L. Jenney, Annette O’Brien, Welding Handbook, 8th ed., (American Welding Society, 1987) https://doi.org/10.1007/978-1-349-10624-0.

  17. R. Sudhakar, R. Sivasubramanian and J. Yoganandh, Effect of Automated MIG Welding Process Parameters on ASTM A 106 Grade B Pipe Weldments used in High-Temperature Applications, Mater. Manuf. Processes, 2018, 33(7), p 749–758. https://doi.org/10.1080/10426914.2017.1401719

    Article  CAS  Google Scholar 

  18. S. Das, J.J. Vora and V. Patel, Regulated Metal Deposition (RMDTM) Technique for Welding Applications: An Advanced Gas Metal Arc Welding Process, Advances in Welding Technologies for Process Development. CRC Press, USA, 2019, p 23–32

    Chapter  Google Scholar 

  19. J. Cuhel, Modified GMAW for Root Passes, TPJ-The Tube & Pipe Journal®. 1–4 (2008)

  20. M. Roth, Shinn Mechanical Uses PipeWorx Welding System to Increase Pipe Fabrication Quality and Productivity, Miller Electric Mfg. LLC. 1–4, (2009)

  21. M. Roth, Graham Corporation Meets Reduced Rework Objectives with Help from Miller’s PipeWorx TM Welding Systems, (2018)

  22. J. Cuhel, K. Packard, RMD® Short-Circuit Metal Transfer, Pulsed MIG Processes with Metal-Cored Wires Improve Pipe Fabrication for Swartfager Welding, Inc., Miller Electric Mfg. LLC. 1–8, (2009)

  23. L.A. do Nascimento, L.O. Vilarinho, Evaluation of GMAW Processes GMAW Controlled Short-Circuit Transfer (STT) applied To Mechanized Girth Welding, in: Congresso Nacional de Engenharia Mecânica Fortaleza/CE, 1–16, (2016)

  24. Dinbandhu, V. Prajapati, J.J. Vora and K. Abhishek, Advances in gas metal arc welding process: modifications in short-circuiting transfer mode, Adv. Weld. Deform., 2021 https://doi.org/10.1016/b978-0-12-822049-8.00003-7

    Article  Google Scholar 

  25. F. Kolahan and M. Heidari, A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW, World Acad. Sci. Eng. Technol., 2009, 59, p 138–141. https://doi.org/10.5281/zenodo.1081164

    Article  Google Scholar 

  26. Y.S. Tarng and W.H. Yang, Optimisation of the Weld Bead Geometry in Gas Tungsten Arc Welding by the Taguchi Method, Int. J. Adv. Manuf. Technol., 1998, 14, p 549–554. https://doi.org/10.1007/BF01301698

    Article  Google Scholar 

  27. S.K. Gupta, S. Mehrotra, A.R. Raja, M. Vashista and M.Z.K. Yusufzai, Effect of Welding Speed on Weld Bead Geometry and Percentage Dilution in Gas Metal Arc Welding of SS409L, Mater. Today Proc., 2019, 18, 5032–5039. https://doi.org/10.1016/j.matpr.2019.07.497

    Article  CAS  Google Scholar 

  28. P.E. Murray and A. Scotti, Depth of Penetration in Gas Metal Arc Welding, Sci. Technol. Weld. Joining, 1999, 4, p 112–117. https://doi.org/10.1179/136217199101537644

    Article  CAS  Google Scholar 

  29. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Ltd., New Jersey, USA, 2001.

  30. K. Deb, Optimization for Engineering Design-Algorithms and Examples, 2nd ed. PHI Learning Private Limited, New Delhi, 2012.

    Google Scholar 

  31. E.K.P. Chong and S.H. Zak, An Introduction to Optimization, IEEE Antennas Propag. Mag., 1996, 38, p 60. https://doi.org/10.1109/MAP.1996.500234

    Article  Google Scholar 

  32. U.M. Diwekar, Introduction to Applied Optimization, Springer, Boston, 2003. https://doi.org/10.1007/978-1-4757-3745-5

    Book  Google Scholar 

  33. S. Chatterjee, S.S. Mahapatra, L. Lamberti and C.I. Pruncu, Prediction of Welding Responses Using AI Approach: Adaptive Neuro-Fuzzy Inference System and Genetic Programming, J. Braz. Soc. Mech. Sci. Eng, 2022 https://doi.org/10.1007/S40430-021-03294-W

    Article  Google Scholar 

  34. S. Chatterjee, S.S. Mahapatra, V. Bharadwaj, B.N. Upadhyay and K.S. Bindra, Prediction of Quality Characteristics of Laser Drilled Holes Using Artificial Intelligence Techniques, Eng. Computers, 2021, 37, p 1181–1204. https://doi.org/10.1007/S00366-019-00878-Y/TABLES/9

    Article  Google Scholar 

  35. S. Chatterjee, S.K. Sahoo, B. Swain, S.S. Mahapatra and T. Roy, Quality Characterization of Dissimilar Laser Welded Joints of Ti6Al4V with AISI 304 by Using Copper Deposition Technique, Int. J. Adv. Manuf. Technol., 2020, 106, p 4577–4591. https://doi.org/10.1007/S00170-020-04935-5/FIGURES/25

    Article  Google Scholar 

  36. D. Bandhu, J.J. Vora, S. Das, A. Thakur, S. Kumari, K. Abhishek and M.N. Sastry, Experimental Study on Application of Gas Metal Arc Welding Based Regulated Metal Deposition Technique for Low Alloy Steel, Mater. Manuf. Processes., 2022 https://doi.org/10.1080/10426914.2022.2049298

    Article  Google Scholar 

  37. J.P. Mistry, Effect of Process Parameters on Bead Geometry and Shape Relationship of Gas Metal Arc Weldments, International J. Adv. Res. Mech. Eng. Technol. (IJARMET). 2, 24–27 (2016). www.ijarmet.com (accessed March 4, 2021).

  38. M. Nouri, A. Abdollah-Zadeh, F. Malek, Effect of welding parameters on dilution and weld bead geometry in cladding, J. Mater. Sci. Technol. 23, 817–822 (2007). https://www.jmst.org/CN/ (accessed March 4, 2021).

  39. R. Darji, V. Badheka, K. Mehta, J. Joshi and A. Yadav, Processing of Copper by Keyhole Gas Tungsten Arc Welding for Uniformity of Weld Bead Geometry, Mater. Manuf. Processes, 2020 https://doi.org/10.1080/10426914.2020.1784932

    Article  Google Scholar 

  40. S. Datta, M.S. Raza, P. Saha and D.K. Pratihar, Effects of Process Parameters on the Quality Aspects of Weld-Bead in Laser Welding of NiTinol Sheets, Mater. Manuf. Processes, 2019, 34, p 648–659. https://doi.org/10.1080/10426914.2019.1566608

    Article  CAS  Google Scholar 

  41. S.K. Sharma, S. Maheshwari and R.K.R. Singh, Effect of Heat-Input and Cooling-Time on Bead Characteristics in SAW, Mater. Manuf. Processes, 2019, 34, p 208–215. https://doi.org/10.1080/10426914.2018.1532578

    Article  CAS  Google Scholar 

  42. S. Mandal, S. Kumar, P. Bhargava and C.P. Paul, Analysis of Discontinuous Bead Formation by PTAW Process, Mater. Manuf. Processes, 2016, 31, p 2181–2185. https://doi.org/10.1080/10426914.2016.1198020

    Article  CAS  Google Scholar 

  43. A. Choudhary, M. Kumar and D.R. Unune, Experimental Investigation and Optimization of Weld Bead Characteristics During Submerged Arc Welding of AISI 1023 Steel, Def. Technol., 2019, 15, p 72–82. https://doi.org/10.1016/j.dt.2018.08.004

    Article  Google Scholar 

  44. D.K. Choudhary, S. Jindal and N.P. Mehta, To Study the Effect of Welding Parameters on Weld Bead Geometry in SAW Welding Process, Elixir Mech. Engg., 2011, 40, p 5519–5524. https://doi.org/10.4236/jmmce.2011.109064

    Article  Google Scholar 

  45. P. Kumari, K. Archna and R.S. Parmar, Effect of Welding Parameters on Weld Bead Geometry in MIG Welding of Low Carbon Steel, J. Mater. Sci. Technol., 2007, 23, p 249–258.

    Google Scholar 

  46. S. Das, J.J. Vora, V. Patel, W. Li, J. Andersson, D.Y. Pimenov, K. Giasin and S. Wojciechowski, Experimental Investigation on Welding of 2.25 Cr-1.0 Mo Steel with Regulated Metal Deposition and GMAW Technique Incorporating Metal-Cored Wires, J. Mater. Res. Technol., 2021, 15, p 1007–1016. https://doi.org/10.1016/j.jmrt.2021.08.081

    Article  CAS  Google Scholar 

  47. D. Bandhu and K. Abhishek, Assessment of Weld Bead Geometry in Modified Shortcircuiting Gas Metal Arc Welding Process for Low Alloy Steel, Mater. Manuf. Processes, 2021, 36, p 1384–1402. https://doi.org/10.1080/10426914.2021.1906897

    Article  CAS  Google Scholar 

  48. Dinbandhu, K. Abhishek, Parametric Optimization and Evaluation of RMDTM Welding Performance for ASTM A387 Grade 11 Steel Plates Using TOPSIS-Taguchi Approach, in: Advances in Materials Processing and Manufacturing Applications. ICADMA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2021: pp. 215–227. https://doi.org/10.1007/978-981-16-0909-1_22.

  49. G. Ma, H. Yuan, L. Yu and Y. He, Monitoring of Weld Defects of Visual Sensing Assisted GMAW Process with Galvanized Steel, Mater. Manuf. Processes., 2021 https://doi.org/10.1080/10426914.2021.1885711

    Article  Google Scholar 

  50. A.K. Pandey, P.M. Pandey and S. Pandey, Control of Weld Distortion Through in-situ Preheating of Weld Filler Wire, Mater. Manuf. Processes, 2020 https://doi.org/10.1080/10426914.2020.1866194

    Article  Google Scholar 

  51. Y. Koli, N. Yuvaraj and S. Aravindan, Investigations on Weld Bead Geometry and Microstructure in CMT, MIG Pulse Synergic and MIG Welding of AA6061-T6, Mater. Res. Exp., 2019, 6, p 126. https://doi.org/10.1088/2053-1591/ab61b6

    Article  CAS  Google Scholar 

  52. U. Esme, M. Bayramoglu, Y. Kazancoglu and S. Ozgun, Optimization of Weld Bead Geometry in Tig Welding Process Using Grey Relation Analysis and Taguchi Method, Mater. Technol., 2009, 43, p 143–149.

    CAS  Google Scholar 

  53. A. Bhattacharya and T.K. Bera, Development of Automatic GMAW Setup for Process Improvements: Experimental and Modeling Approach, Mater. Manuf. Processes, 2014, 29, p 988–995. https://doi.org/10.1080/10426914.2014.892611

    Article  CAS  Google Scholar 

  54. K. Devakumaran, N. Rajasekaran and P.K. Ghosh, Process Characteristics of Inverter Type GMAW Power Source Under Static and Dynamic Operating Conditions, Mater. Manuf. Processes, 2012, 27, p 1450–1456. https://doi.org/10.1080/10426914.2012.663149

    Article  CAS  Google Scholar 

  55. Z. Zhang and X. Kong, Study on DC Double Pulse Metal Inert Gas (MIG) Welding of Magnesium Alloy, Mater. Manuf. Processes, 2012 https://doi.org/10.1080/10426914.2011.585500

    Article  Google Scholar 

  56. J. Luo, Q. Luo, X. Wang and X. Wang, EMS-CO2 Welding: A New Approach to Improve Droplet Transfer Characteristics and Welding Formation, Mater. Manuf. Processes, 2010, 25, p 1233–1241. https://doi.org/10.1080/10426914.2010.481000

    Article  CAS  Google Scholar 

  57. What is Weld Spatter? | OTC DAIHEN, (n.d.). https://www.daihen-usa.com/weld-spatter/ (accessed March 17, 2021)

  58. J.J. Vora and V.J. Badheka, Experimental Investigation on Microstructure and Mechanical Properties of Activated TIG Welded Reduced Activation Ferritic/Martensitic Steel Joints, J. Manuf. Process., 2017, 25, p 85–93. https://doi.org/10.1016/j.jmapro.2016.11.007

    Article  Google Scholar 

  59. J.J. Vora and V.J. Badheka, Improved Penetration with the Use of Oxide Fluxes in Activated TIG Welding of Low Activation Ferritic/Martensitic Steel, Trans. Indian Inst. Met., 2016, 69, p 1755–1764. https://doi.org/10.1007/s12666-016-0835-6

    Article  CAS  Google Scholar 

  60. J.J. Vora and V.J. Badheka, Experimental Investigation on Mechanism and Weld Morphology of Activated TIG Welded Bead-on-Plate Weldments of Reduced Activation Ferritic/Martensitic Steel Using Oxide Fluxes, J. Manuf. Process., 2015, 20, p 224–233. https://doi.org/10.1016/j.jmapro.2015.07.006

    Article  Google Scholar 

  61. T.F. Costa, L.O. Vilarinho, Influence of Process Parameters During the Pipe Welding of Low-Carbon Steel Using RMD (Regulated Metal Deposition) Process, in: Proceedings of COBEM 2011; 21st Brazilian Congress of Mechanical Engineering Copyright © 2011 by ABCM October 24–28, 2011, (Natal, RN, Brazil), 2011: pp. 1–10.

  62. Miller Welds, New regulated metal deposition (RMDTM) MIG welding process improves stainless steel pipe fabrication, Miller Electric Mfg. LLC. (2017) 1–8. https://www.millerwelds.com/resources/article-library/new-regulated-metal-deposition-rmd-mig-welding-process-improves-stainless-steel-pipe-fabrication.

  63. J. Cuhel, D. Benson, Welding stainless steel tube and pipe: maintaining corrosion resistance and increasing productivity, Miller Electric Mfg. LLC. (2009) 1–4.

  64. B. Yang, W.C. Jiang, W.Q. Sun, Y.L. Zhao, W.Y. Zhang, Microstructure and tensile properties of a 1.25Cr-0.5Mo main steam pipe after long-term service, in: American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, American Society of Mechanical Engineers (ASME), (2018) https://doi.org/10.1115/pvp2018-84185.

  65. K. Prasad and D.K. Dwivedi, Microstructure and Tensile Properties of Submerged Arc Welded 1.25Cr-0.5Mo Steel Joints, Mater. Manuf. Processes., 2008, 23, p 463–468. https://doi.org/10.1080/10426910802103551

    Article  CAS  Google Scholar 

  66. S.K. Das, A. Joarder and A. Mitra, Magnetic Barkhausen emissions and microstructural degradation study in 1.25 Cr-0.50 Mo steel during high temperature exposure, NDT E Int., 2004, 37, p 243–248. https://doi.org/10.1016/S0963-8695(03)00032-X

    Article  CAS  Google Scholar 

  67. K. Prasad and D.K. Dwivedi, Some Investigations on Microstructure and Mechanical Properties of Submerged Arc Welded HSLA Steel Joints, Int. J. Adv. Manuf. Technol., 2008, 36, p 475–483. https://doi.org/10.1007/s00170-006-0855-1

    Article  Google Scholar 

  68. H. Cetine and M. Ayvaz, Microstructure and Mechanical Properties of AA 5083 and AA 6061 Welds Joined with Alsi5 and Alsi12wires, Materialpruefung/Mater Test, 2014 https://doi.org/10.3139/120.110647

    Article  Google Scholar 

  69. C.H. Hung, W.T. Chen, M.H. Sehhat and M.C. Leu, The Effect of laser Welding Modes on Mechanical Properties and Microstructure of 304L Stainless Steel Parts Fabricated by Laser-Foil-Printing Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2021, 112, p 867–877. https://doi.org/10.1007/s00170-020-06402-7

    Article  Google Scholar 

  70. E. Taban, Joining of Duplex Stainless Steel by Plasma Arc, TIG, and Plasma Arc+TIG Welding Processes, Mater. Manuf. Processes, 2008, 23, p 871–878. https://doi.org/10.1080/10426910802385075

    Article  CAS  Google Scholar 

  71. R. Manti and D.K. Dwivedi, Microstructure of Al-Mg-Si Weld Joints Produced by Pulse TIG Welding, Mater. Manuf. Processes, 2007, 22, p 57–61. https://doi.org/10.1080/10426910601015923

    Article  CAS  Google Scholar 

  72. S. Tathgir, A. Bhattacharya and T.K. Bera, Influence of Current and Shielding Gas in TiO2 Flux Activated Tig Welding on Different Graded Steels, Mater. Manuf. Processes, 2015, 30, p 1115–1123. https://doi.org/10.1080/10426914.2014.973591

    Article  CAS  Google Scholar 

  73. S. Tathgir and A. Bhattacharya, Activated-TIG Welding of Different Steels: Influence of Various Flux and Shielding Gas, Mater. Manuf. Processes, 2016, 31, p 335–342. https://doi.org/10.1080/10426914.2015.1037914

    Article  CAS  Google Scholar 

  74. B.K. Khamari, P. Kumar Sahu and B.B. Biswal, Microstructure Analysis of Arc Welded Mild Steel Plates, IOP Conf. Series Mater. Sci. Eng., 2018 https://doi.org/10.1088/1757-899X/377/1/012049

    Article  Google Scholar 

  75. R. Singh, B. Prasad and B.N. Rai, Effect of Parameters Involved in Arc Welded Mild Steel Plates, IOP Conf. Series Mater. Sci. Eng., 2018 https://doi.org/10.1088/1757-899X/377/1/012179

    Article  Google Scholar 

  76. N.R. Jesudoss Hynes, P. Nagaraj and J.A. Jennifa Sujana, Investigation on Joining of Aluminum and Mild Steel by Friction Stud Welding, Mater. Manuf. Processes., 2012, 27, p 1409–1413. https://doi.org/10.1080/10426914.2012.667894

    Article  CAS  Google Scholar 

  77. R. Kumar, A. Bhattacharya and T.K. Bera, Mechanical and Metallurgical Studies in Double Shielded GMAW of Dissimilar Stainless Steels, Mater. Manuf. Processes, 2015, 30, p 1146–1153. https://doi.org/10.1080/10426914.2014.994760

    Article  CAS  Google Scholar 

  78. A.K. Lakshminarayanan, V. Balasubramanian and M. Salahuddin, Microstructure, Tensile and Impact Toughness Properties of Friction Stir Welded Mild Steel, J. Iron Steel Res. Int., 2010, 17, p 68–74. https://doi.org/10.1016/S1006-706X(10)60186-0

    Article  CAS  Google Scholar 

  79. I.A. Ibrahim, S.A. Mohamat, A. Amir and A. Ghalib, The Effect of Gas Metal Arc Welding (GMAW) Processes on Different Welding Parameters, Procedia Eng., 2012, 41, p 1502–1506. https://doi.org/10.1016/j.proeng.2012.07.342

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank ITW India Private Ltd.-Welding Group, Vadodara, Gujarat, for their dynamic cooperation in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Din Bandhu.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal ties that may seem to have influenced the study presented in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandhu, D., Goud, E.V., Vora, J.J. et al. Influence of Regulated Metal Deposition and Gas Metal Arc Welding on ASTM A387-11–2 Steel Plates: As-deposited Inspection, Microstructure, and Mechanical Properties. J. of Materi Eng and Perform 32, 1025–1038 (2023). https://doi.org/10.1007/s11665-022-07185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07185-6

Keywords

Navigation