Skip to main content
Log in

Effect of High-Speed Dry Face Milling on Surface Integrity Characteristics of AZ91 Mg Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, high-speed dry face milling is performed on AZ91 magnesium alloy using uncoated carbide inserts. The most influential surface integrity characteristics, such as surface roughness, hardness, microstructure and residual stresses, are investigated for a set of milling parameters chosen from the Taguchi design of experiments. The impact of machining conditions, such as feed rate, cutting speed and depth of cut on the surface integrity characteristics, are identified in order to improve the overall functionality of the alloy. Grey Relational Analysis optimization method is implemented to identify the optimal milling conditions. The results showed that high-speed dry face milling is very influential in improving the overall surface integrity characteristics of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zhu, N. Li, and P. Childs, Light-Weighting in Aerospace Component and System Design, Propuls. Power Res., 2018, 7(2), p 103–119. https://doi.org/10.1016/j.jppr.2018.04.001

    Article  Google Scholar 

  2. I. Ostrovsky, and Y. Henn, Present State and Future of Magnesium Application in Aerospace Industry, in‘ASTEC’07 International Conference-New Challenges in Aeronautics, (Moscow, Russia, 1-5, 2007)

  3. J. Jayaraja, M. Prasanth, A. Srinivasan, U. Pillai, and B. Pai, Magnesium–in Indian context, Indian Foundry J., 2015, 61(2), p 49–55.

    Google Scholar 

  4. M. Avedesian and H. Baker, ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, USA, 1999.

    Google Scholar 

  5. B. Ratna Sunil, K.V. Ganesh, P. Pavan, G. Vadapalli, P. Ch Swarnalatha, P. Swapna, G.P. Bindukumar, and K. Reddy, Effect of Aluminum Content on Machining Characteristics of AZ31 and AZ91 Magnesium Alloys During Drilling, J.Magnes.Alloys, 2016, 4(1), p 15–21. https://doi.org/10.1016/j.jma.2015.10.003

    Article  CAS  Google Scholar 

  6. A Angrish 2014 A Critical Analysis of Additive Manufacturing Technologies for Aerospace Applications. in IEEE Aerospace Conference, MT, USA. https://doi.org/10.1109/AERO.2014.6836456

  7. P.V. Badiger, V. Desai, M.R. Ramesh, B.K. Prajwala, and K. Raveendra, Effect of Cutting Parameters on Tool Wear, Cutting Force and Surface Roughness in Machining of MDN431 Alloy Using Al and Fe Coated Tools, Mater. Res. Expr., 2018, 6(1), p 016401. https://doi.org/10.1088/2053-1591/aae2a3

    Article  CAS  Google Scholar 

  8. P.V. Badiger, V. Desai, M.R. Ramesh, B.K. Prajwala, and K. Raveendra, Cutting Forces, Surfaces Roughness and Tool Wear Quality Assessment using ANN and PSO Approach during Machining of MDN431with with TiN/AlN-Coated Cutting Tool, Arab. J. Sci. Eng., 2019, 44(9), p 7465–7477. https://doi.org/10.1007/s13369-019-03783-0

    Article  CAS  Google Scholar 

  9. K. Shi, D. Zhang, and J. Ren, Optimization of Process Parameters for Surface Roughness and Microhardness in Dry Milling of Magnesium Alloy using TAGUCHI with Grey Relational Analysis, Int. J. Adv.Manuf. Technol., 2015, 81(1–4), p 645–651. https://doi.org/10.1007/s00170-015-7218-8

    Article  Google Scholar 

  10. V. Marakini, S. Pai, U. Bhat, D. Singh, and B. Achar, High Speed Machining for Enhancing the AZ91 Magnesium Alloy Surface Characteristics: Influence and Optimization of Machining Parameters, Def. Sci. J., 2022, 72(1), p 105–113. https://doi.org/10.14429/dsj.72.17049

    Article  CAS  Google Scholar 

  11. A. Samaniego, I. Llorente, and S. Feliu, Combined Effect of Composition and Surface Condition on Corrosion Behaviour of Magnesium Alloys AZ31 and AZ61, Corros. Sci., 2013, 68, p 66–71. https://doi.org/10.1016/j.corsci.2012.10.034

    Article  CAS  Google Scholar 

  12. U. Reddy, D. Dubey, S.S. Panda, N. Ireddy, J. Jain, K. Mondal, and S.S. Singh, Effect of Surface Roughness Induced by Milling Operation on the Corrosion Behavior of Magnesium Alloys, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-021-05933-8

    Article  Google Scholar 

  13. M. Danish, S. Rubaiee, and H. Ijaz, Predictive Modelling and Multi-Objective Optimization of Surface Integrity Parameters in Sustainable Machining Processes of Magnesium Alloy, Materials, 2021, 14(13), p 3547. https://doi.org/10.3390/ma14133547

    Article  CAS  Google Scholar 

  14. R. Viswanathan, S. Ramesh, S. Maniraj, and V. Subburam, Measurement and Multi-response Optimization of Turning Parameters for Magnesium Alloy using Hybrid Combination of Taguchi-GRA-PCA Technique, Measurement, 2020, 159, p 107800. https://doi.org/10.1016/j.measurement.2020.107800

    Article  Google Scholar 

  15. M. Danish, T.L. Ginta, AMAdul. Rani, J.P. Diego Carou, S.R. Davim, and S. Ghazali, Investigation of Surface Integrity Induced on AZ31C Magnesium Alloy Turned under Cryogenic and Dry Conditions, Proc. Manuf., 2019, 41, p 476–483. https://doi.org/10.1016/j.promfg.2019.09.035

    Article  Google Scholar 

  16. L. Lu, S. Hu, L. Liu, and Z. Yin, High Speed Cutting of AZ31 Magnesium Alloy, J. Magnes. Alloys, 2016, 4(2), p 128–134. https://doi.org/10.1016/j.jma.2016.04.004

    Article  CAS  Google Scholar 

  17. S. Ramesh, R. Viswanathan, and S. Ambika, Measurement and Optimization of Surface Roughness and Tool Wear via Grey Relational Analysis, TOPSIS RSA Tech. Meas., 2016, 78, p 63–72. https://doi.org/10.1016/j.measurement.2015.09.036

    Article  Google Scholar 

  18. Y. Bekir, and O. Eylul, Experimental Investigation on Turning of Casted Magnesium Alloy used in Manufacturing Automotive Parts.in Advances in Materials & Processing Technologies Conference, (Madrid, Spain, 2015).

  19. M. Zeyveli, The Effect of Aging and Cutting Parameters on surface Roughness of AZ91 Magnesium Alloys, in 53th International Foundry Conference: Portorož 2015, (Portoroz, Slovenia, 2013).

  20. A. Mostafapour, M. Mohammadi, and A. Ebrahimpour, The Influence of Milling Parameters on the Surface Properties in Milled AZ91C Magnesium Alloy, Iran. J. Mater. Sci. Eng., 2021 https://doi.org/10.22068/ijmse.1971

    Article  Google Scholar 

  21. N. Anandan, and M. Ramulu, Study of Machining Induced Surface Defects and its Effect on Fatigue performance of AZ91/15%SiCp Metal Matrix Composite, J. Magnes. Alloys, 2020, 8(2), p 387–395. https://doi.org/10.1016/j.jma.2020.01.001

    Article  CAS  Google Scholar 

  22. I. Zagórski, and J. Korpysa, Surface Quality Assessment After Milling AZ91D Magnesium Alloy using PCD Tool. Materials, 2020, 13(3), 617. https://doi.org/10.3390/ma13030617

  23. I. Zagórski, and J. Korpysa, Surface Quality in Milling of AZ91D Magnesium Alloy, Adv. Sci. Technol. Res. J., 2019, 13(2), p 119–129. https://doi.org/10.12913/22998624/108547

    Article  Google Scholar 

  24. M. Klonica, J. Matuszak, and I. Zagórski, Effect of Milling Technology on Selected Surface Layer Properties, in 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), (Turin, Italy, 2019). https://doi.org/10.1109/MetroAeroSpace.2019.8869621

  25. G. Basmaci, A. Taskin, and U. Koklu, Effect of Tool Path Strategies and Cooling Conditions in Pocket Machining of AZ91 Magnesium Alloy, Indian J. Chem. Technol., 2019, 26, p 139–145.

    CAS  Google Scholar 

  26. S. Sivam, M. Bhat, S. Natarajan, and N. Chauhan, Analysis of Residual Stresses, Thermal Stresses, Cutting Forces and Other Output Responses of Face Milling Operation on ZE41 Magnesium Alloy, Int. J. Mod. Manuf. Technol. 2018, 92–100.

  27. M. Pradeepkumar, R. Venkatesan, and V. Kaviarasan, Evaluation of the Surface Integrity in the Milling of a Magnesium Alloy using an Artificial Neural Network and a Genetic Algorithm, Materiali Tehnologije, 2018, 52(3), p 367–373. https://doi.org/10.17222/mit.2017.198

    Article  CAS  Google Scholar 

  28. M.S. Uddin, H. Rosman, C. Hall, and P. Murphy, Enhancing the Corrosion Resistance of Biodegradable Mg-Based Alloy by Machining-Induced Surface Integrity: Influence of Machining Parameters on Surface Roughness and Hardness, Int. J. Adv. Manuf. Technol., 2016, 90(5–8), p 2095–2108. https://doi.org/10.1007/s00170-016-9536-x

    Article  Google Scholar 

  29. K. Shi, D. Zhang, J. Ren, C. Yao, and X. Huang, Effect of Cutting Parameters on Machinability Characteristics in Milling of Magnesium Alloy with Carbide Tool, Adv. Mech. Eng., 2016, 8(1), p 168781401662839. https://doi.org/10.1177/1687814016628392

    Article  CAS  Google Scholar 

  30. MS Ruslan K Othman JA Ghani MS Kassim CHC Haron 2016 Surface Roughness of Magnesium Alloy AZ91D in High Speed Milling Jurnal Teknologi 78 6-9https://doi.org/10.11113/jt.v78.9158

  31. C. Gao, R. Gao, and Y. Ma, Microstructure and Mechanical Properties of Friction Spot Welding Aluminium–Lithium 2a97 Alloy, Mater. Des., 2015, 83, p 719–727. https://doi.org/10.1016/j.matdes.2015.06.013

    Article  CAS  Google Scholar 

  32. J. Niu, Z. Liu, X. Ai, W. Huang, G. Wang, and R. Duan, Characteristics of Machined Surface Integrity in Face Milling Al-Li alloy 2A97 with Carbide Inserts, Int. J. Adv. Manuf. Technol., 2018, 101(1–4), p 839–848. https://doi.org/10.1007/s00170-018-2907-8

    Article  Google Scholar 

  33. N. Zolotorevsky, A. Solonin, A. Churyumov, and V. Zolotorevsky, Study of Work Hardening of Quenched and Naturally Aged Al-Mg and Al-Cu Alloys, Mater. Sci. Eng. A, 2009, 502(1–2), p 111–117. https://doi.org/10.1016/j.msea.2008.10.010

    Article  CAS  Google Scholar 

  34. M. Danish, T.L. Ginta, K. Habib, D. Carou, A.M.A. Rani, and B.B. Saha, Thermal Analysis during Turning of AZ31 Magnesium Alloy Under Dry and Cryogenic Conditions, Int. J. Adv. Manuf. Technol., 2017, 91(5–8), p 2855–2868. https://doi.org/10.1007/s00170-016-9893-5

    Article  Google Scholar 

  35. M. Danish, T.L. Ginta, K. Habib, A.M.A. Rani, and B.B. Saha, Effect of Cryogenic Cooling on the Heat Transfer during Turning of AZ31C Magnesium Alloy, Heat Transf. Eng., 2018, 40(12), p 1023–1032. https://doi.org/10.1080/01457632.2018.1450345

    Article  CAS  Google Scholar 

  36. S. Hwang, C. Nishimura, and P. McCormick, Mechanical Milling of Magnesium Powder, Mater. Sci. Eng. A, 2001, 318(1–2), p 22–33. https://doi.org/10.1016/s0921-5093(01)01767-1

    Article  Google Scholar 

  37. Z. Pu, J. Outeiro, A. Batista, O. Dillon, D. Puleo, and I. Jawahir, Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components, Int. J. Mach. Tools Manuf, 2012, 56, p 17–27. https://doi.org/10.1016/j.ijmachtools.2011.12.006

    Article  Google Scholar 

  38. L. Zheng, H. Nie, W. Liang, H. Wang, and Y. Wang, Effect of Pre-Homogenizing Treatment on Microstructure and Mechanical Properties of Hot-Rolled AZ91 Magnesium Alloys, J. Magnes. Alloys, 2016, 4(2), p 115–122. https://doi.org/10.1016/j.jma.2016.04.002

    Article  CAS  Google Scholar 

  39. A. Afsharnaderi, M. Malekan, M. Emamy, J.R. Ghani, and M. Lotfpour, Microstructure Evolution and Mechanical Properties of the AZ91 Magnesium Alloy with Sr and Ti Additions in the as-cast and as-Aged Conditions, J. Mater. Eng.Perform, 2019, 28(11), p 6853–6863. https://doi.org/10.1007/s11665-019-04396-2

    Article  CAS  Google Scholar 

  40. Y. Galindez, E. Correa, A.A. Zuleta, A. Valencia-Escobar, D. Calderon, L. Toro, P. Chacón, and E.F. Echeverría, Improved Mg-Al-Zn Magnesium Alloys Produced by High Energy Milling and Hot Sintering, Met. Mater. Int., 2019, 27(5), p 1113–1130. https://doi.org/10.1007/s12540-019-00490-1

    Article  CAS  Google Scholar 

  41. R.C. Bonnah, Y. Fu and H. Hao, Microstructure, and Mechanical Properties of AZ91 Magnesium Alloy with Minor Additions of Sm Si and Ca Elements, China Foundry, 2019, 16(5), p 319–325. https://doi.org/10.1007/s41230-019-9067-9

    Article  Google Scholar 

  42. A.F. Abd El-Rehim, H.Y. Zahran, H.M. Al-Masoud, and D.M. Habashy, Microhardness and Microstructure Characteristics of AZ91 Magnesium Alloy under Different Cooling Rate Conditions, Mater. Res. Expr., 2019, 6(8), p 086572. https://doi.org/10.1088/2053-1591/ab1ad6

    Article  CAS  Google Scholar 

  43. J. Taleghani, and J. Torralba, Hot Workability of Nanocrystalline AZ91 Magnesium Alloy, J. Alloy. Compd., 2014, 595, p 1–7. https://doi.org/10.1016/j.jallcom.2014.01.091

    Article  CAS  Google Scholar 

  44. J. Taleghani, and J. Torralba, The Microstructural Evolution of a Pre-Alloyed AZ91 Magnesium Alloy Powder Through High-Energy Milling and Subsequent Isothermal Annealing, Mater. Lett., 2013, 98, p 182–185. https://doi.org/10.1016/j.matlet.2013.02.052

    Article  CAS  Google Scholar 

  45. N. Wojtowicz, I. Danis, F. Monies, P. Lamesle, and R. Chieragati, The Influence of Cutting Conditions on Surface Integrity of a Wrought Magnesium Alloy, Proc.Eng., 2013, 63, p 20–28. https://doi.org/10.1016/j.proeng.2013.08.212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Aeronautics R & D Board, DRDO, New Delhi for the funding support. Sanction Code: MSRB/TM/ARDB/GIA/19-20/044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa P Pai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marakini, V., Pai, S.P., Bhat, U.K. et al. Effect of High-Speed Dry Face Milling on Surface Integrity Characteristics of AZ91 Mg Alloy. J. of Materi Eng and Perform 32, 2749–2757 (2023). https://doi.org/10.1007/s11665-022-07187-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07187-4

Keywords

Navigation