Skip to main content
Log in

Investigation of the Annealing Effects on Mechanical Properties and Interfacial Characteristic of TA1/Al5083 Bimetal Composite

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of annealing treatment on the mechanical properties and interfacial characteristics of a TA1/Al5083 bimetal composite was investigated in this research. The bimetal composite plates were prepared by explosive welding and annealing at temperatures ranging from 400 to 550 °C at intervals of 50 °C for 3 h. Uniaxial tensile and shear tests were employed to study the influence of the annealing treatments. Uniaxial tensile tests indicate that the tensile strength and elongation display a tendency to first improve and then decrease with increasing annealing temperature. No obvious necking phenomenon is observed in the composite sheet annealed at 400 and 450 °C, and extremely short cracks appear in the interfacial transition zone, while localized necking and delamination phenomena are found to occur in the composite sheet annealed at 500 and 550 °C. The ultimate tensile strength and elongation of specimens annealed at 450 and 500 °C is improved, while specimens annealed at 550 °C show a serious deterioration in elongation. In addition, shear tests demonstrate that the shear strength first improves and then decreases with increasing annealing temperature. On the basis of a finite element method (FEM) simulation, a cohesive zone model is validated to reveal the interfacial characteristics. The research results obtained in this work provide a direction for further investigation and design of bimetal or laminated composite components for application in industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Li, J. Zhao, F. Jia, Q. Zhang, X. Liang, S. Jiao, and Z. Jiang, Analysis of Bending Characteristics of Bimetal Steel Composite. Int. J. Mech. Sci., 2018, 148, p 272–283.

    Article  Google Scholar 

  2. B.X. Liu, F.X. Yin, X.L. Dai, J.N. He, W. Fang, C.X. Chen, and Y.C. Dong, The Tensile Behaviors and Fracture Characteristics of Stainless Steel Clad Plates with Different Interfacial Status. Mater. Sci. Eng., A, 2017, 679, p 172–182.

    Article  CAS  Google Scholar 

  3. Z. Li, Y.C. Lin, L. Zhang, F. Jia, Z. Jiang, and S. Jiao, Investigation of Compact Tensile and Fracture Mechanical Properties of a Duplex Stainless Steel Bimetal Composite with the Interfacial Zone. J. Market. Res., 2022, 19, p 809–820.

    CAS  Google Scholar 

  4. Z. Li, Y.C. Lin, L. Zhang, J. Zheng, J. Zhao, R. Wang, and Z. Jiang, In-situ Investigation on Tensile Properties of a Novel Ti/Al Composite Sheet. Int. J. Mech. Sci., 2022, 231, p 107592.

    Article  Google Scholar 

  5. K. Li, C. Qiu, Y. Lin, M. Chen, X. Jia, and B. Li, A Weighted Adaptive Transfer Learning for Tool Tip Dynamics Prediction of Different Machine Tools. Comput. Ind. Eng., 2022, 169, p 108273.

    Article  Google Scholar 

  6. X. Jia, Y. Chen, L. Liu, C. Wang, and J. Duan, Combined Pulse Laser: Reliable Tool for High-Quality, High-Efficiency Material Processing. Opt. Laser Technol., 2022, 153, p 108209.

    Article  Google Scholar 

  7. H. Xiao, Z. Qi, C. Yu, and C. Xu, Preparation and Properties for Ti/Al Clad Plates Generated by Differential Temperature Rolling. J. Mater. Process. Technol., 2017, 249, p 285–290.

    Article  CAS  Google Scholar 

  8. Y.-B. Sun, Y.-Q. Zhao, D. Zhang, C.-Y. Liu, H.-Y. Diao, and C.-L. Ma, Multilayered Ti-Al Intermetallic Sheets Fabricated by Cold Rolling and Annealing of Titanium and Aluminum Foils. Trans. Nonferrous Metals Soc. China, 2011, 21(8), p 1722–1727.

    Article  CAS  Google Scholar 

  9. M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the Kinetics of TiAl3 Intermetallic Layer Formation in the Titanium and Aluminum Diffusion Couple. Intermetallics, 2013, 32, p 297–302.

    Article  CAS  Google Scholar 

  10. H. Paul, Ł Maj, M. Prażmowski, A. Gałka, M. Miszczyk, and P. Petrzak, Microstructure and Mechanical Properties of Multi-Layered Al/Ti Composites Produced by Explosive Welding. Proc. Manufact., 2018, 15, p 1391–1398.

    Article  Google Scholar 

  11. Z.H. Han, P.X. Zhu, Y.Z. Guo, and S.G. Zhou, Study on the Interface and Performance of Ti-Al Laminated Composite Electrode Materials. J. New Mater. Electrochem. Syst., 2015, 18(3), p 159–164.

    Article  CAS  Google Scholar 

  12. X. Zhang, Y. Yu, B. Liu, Y. Zhao, J. Ren, Y. Yan, R. Cao, and J. Chen, In-situ Investigation of Deformation Behavior and Fracture Mechanism of Laminated Al/Ti Composites Fabricated by Hot Rolling. J. Alloy. Compd., 2019, 783, p 55–65.

    Article  CAS  Google Scholar 

  13. X.B. Zhang, Y.B. Yu, B. Liu, Y.C. Zhao, J.Q. Ren, Y.J. Yan, R. Cao, and J.H. Chen, Microstructure Characteristics and Tensile Properties of Multilayer Al-6061/Ti-TA1 Sheets Fabricated by Accumulative Roll Bonding. J. Mater. Process. Technol., 2020, 275, p 116378.

    Article  CAS  Google Scholar 

  14. G. Xunzhong, F. Minyu, L. Zhongli, M. Fuye, W. Liuan, and T. Jie, Explosive Cladding and Hot Pressing of Ti/Al/Ti Laminates. Rare Metal Mater. Eng., 2017, 46(5), p 1192–1196.

    Article  Google Scholar 

  15. X. Jia, Y. Chen, L. Liu, C. Wang, and J. Duan, Advances in Laser Drilling of Structural Ceramics. Nanomaterials (Basel), 2022, 12(2), p 230.

    Article  CAS  Google Scholar 

  16. T.Q. Mo, J. Chen, Z.J. Chen, W.J. He, and Q. Liu, Microstructure Evolution During Roll Bonding and Growth of Interfacial Intermetallic Compounds in Al/Ti/Al Laminated Metal Composites. JOM, 2019, 71(12), p 4769–4777.

    Article  CAS  Google Scholar 

  17. W.H. Chen, W.J. He, Z.J. Chen, Z. Zhou, and Q. Liu, Effect of Wavy Profile on the Fabrication and Mechanical Properties of Al/Ti/Al Composites Prepared by Rolling Bonding: Experiments and Finite Element Simulations. Adv. Eng. Mater., 2019, 21(11), p 1900637.

    Article  CAS  Google Scholar 

  18. X. Wu, C. Shi, Z. Fang, S. Lin, and Z. Sun, Comparative Study on Welding Energy and Interface Characteristics of Titanium–Aluminum explosive Composites With and Without Interlayer. Mater. Des., 2021, 197, p 109279.

    Article  CAS  Google Scholar 

  19. H. Liang, N. Luo, Y. Chen, G. Wang, and J. Wang, Interface Microstructure and Phase Constitution of AA1060/TA2/SS30408 Trimetallic Composites Fabricated by Explosive Welding. J. Market. Res., 2022, 18, p 564–576.

    CAS  Google Scholar 

  20. N. Thiyaneshwaran, K. Sivaprasad, and B. Ravisankar, Characterization Based Analysis on TiAl3 Intermetallic Phase Layer Growth Phenomenon and Kinetics in Diffusion Bonded Ti/TiAl3/Al Laminates. Mater. Charact., 2021, 174, p 110981.

    Article  CAS  Google Scholar 

  21. L. Xu, Y.Y. Cui, Y.L. Hao, and R. Yang, Growth of Intermetallic Layer in Multi-Laminated Ti/Al Diffusion Couples. Mater. Sci. Eng., A, 2006, 435–436, p 638–647.

    Article  Google Scholar 

  22. M.Y. Fan, Z.F. Luo, Z.X. Fu, X.Z. Guo, and J. Tao, Vacuum Hot Pressing and Fatigue Behaviors of Ti/Al Laminate Composites. Vacuum, 2018, 154, p 101–109.

    Article  CAS  Google Scholar 

  23. L. Qin, H. Wang, S.Q. Cui, Q. Wu, M.Y. Fan, Z.H. Yang, and J. Tao, Characterization and Formability of Titanium/Aluminum Laminate Composites Fabricated by Hot Pressing. J. Mater. Eng. Perform., 2017, 26(7), p 3579–3587.

    Article  CAS  Google Scholar 

  24. I. Kaya, O.N. Cora, D. Acar, and M. Koc, On the Formability of Ultrasonic Additive Manufactured Al-Ti Laminated Composites. Metall. Mater. Trans. A, 2018, 49A(10), p 5051–5064.

    Article  Google Scholar 

  25. M. Fan, J. Domblesky, K. Jin, L. Qin, S. Cui, X. Guo, N. Kim, and J. Tao, Effect of Original Layer Thicknesses on the Interface Bonding and Mechanical Properties of Ti Al Laminate Composites. Mater. Des., 2016, 99, p 535–542.

    Article  CAS  Google Scholar 

  26. Y. Du, G. Fan, T. Yu, N. Hansen, L. Geng, and X. Huang, Laminated Ti-Al Composites: Processing, Structure and Strength. Mater. Sci. Eng., A, 2016, 673, p 572–580.

    Article  CAS  Google Scholar 

  27. M. Cao, K.-K. Deng, K.-B. Nie, C.-J. Wang, L. Wang, and W. Liang, Microstructure, Mechanical Properties and Formability of Ti/Al/Ti Laminated Composites Fabricated by Hot-Pressing. J. Manuf. Process., 2020, 58, p 322–334.

    Article  Google Scholar 

  28. T. Mo, J. Chen, Z. Chen, J. Liu, Z. Zhou, W. He, and Q. Liu, Effect of Intermetallic Compounds (IMCs) on the Interfacial Bonding Strength and Mechanical Properties of Pre-Rolling Diffusion ARBed Al/Ti Laminated Composites. Mater. Charact., 2020, 170, p 110731.

    Article  CAS  Google Scholar 

  29. J. Liu, Y.Z. Wu, L. Wang, H. Wang, C. Kong, A. Pesin, A.P. Zhilyaev, and H.L. Yu, Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites Via Cryorolling. Acta Metallurgica Sinica-English Letters, 2020, 33(6), p 871–880.

    Article  CAS  Google Scholar 

  30. Z. Qi, H. Xiao, C. Yu, P. Xu, Z. Wu, and Y. Zhao, Preparation, Microstructure and Mechanical Properties of CP-Ti/AA6061-Al Laminated Composites by Differential Temperature Rolling With Induction Heating. J. Manuf. Process., 2019, 44, p 133–144.

    Article  Google Scholar 

  31. M. Ma, X. Meng, and W.C. Liu, Microstructure and Mechanical Properties of Ti/Al/Ti Laminated Composites Prepared by Hot Rolling. J. Mater. Eng. Perform., 2017, 26(7), p 3569–3578.

    Article  CAS  Google Scholar 

  32. C. Zhang, S. Wang, H. Qiao, Z. Chen, T. Mo, and Q. Liu, Enhancing the Mechanical Properties of Hot Roll Bonded Al/Ti Laminated Metal Composites (LMCs) by Pre-Rolling Diffusion Process. Metals, 2019, 9(7), p 795.

    Article  Google Scholar 

  33. H.P. Ng, T. Przybilla, C. Schmidt, R. Lapovok, D. Orlov, H.-W. Höppel and M. Göken, Asymmetric Accumulative Roll Bonding of Aluminium–Titanium Composite Sheets. Mater. Sci. Eng., A, 2013, 576, p 306–315.

    Article  CAS  Google Scholar 

  34. K.S. Lee, S.J. Bae, H.W. Lee, and S.H. Kang, Interface-Correlated Bonding Properties for a Roll-Bonded Ti/Al 2-Ply Sheet. Mater. Charact., 2017, 134, p 163–171.

    Article  CAS  Google Scholar 

  35. Y. Du, G.H. Fan, T. Yu, N. Hansen, L. Geng, X. Huang, and Iop. Effects of Interface Roughness on the Annealing Behaviour of Laminated Ti-Al Composite Deformed by Hot Rolling. In 36th Riso International Symposium on Materials Science. 2015. Riso: Iop Publishing Ltd.

  36. H. Yu, C. Lu, A.K. Tieu, H. Li, A. Godbole, and C. Kong, Annealing Effect on Microstructure and Mechanical Properties of Al/Ti/Al Laminate Sheets. Mater. Sci. Eng., A, 2016, 660, p 195–204.

    Article  CAS  Google Scholar 

  37. R. Jafari, B. Eghbali, and M. Adhami, Influence of Annealing on the Microstructure and Mechanical Properties of Ti/Al and Ti/Al/Nb Laminated Composites. Mater. Chem. Phys., 2018, 213, p 313–323.

    Article  CAS  Google Scholar 

  38. H.G. Huang, P. Chen, and C. Ji, Solid-Liquid Cast-Rolling Bonding (SLCRB) and Annealing of Ti/Al Cladding Strip. Mater. Des., 2017, 118, p 233–244.

    Article  CAS  Google Scholar 

  39. J.T. Peng, Z.Y. Liu, P. Xia, M. Lin, and S.M. Zeng, On the Interface and Mechanical Property of Ti/Al-6%Cu-0.5%Mg-0.4%Ag Bimetal Composite Produced by Cold-Roll Bonding and Subsequent Annealing Treatment. Mater. Lett., 2012, 74, p 89–92.

    Article  CAS  Google Scholar 

  40. M. Cao, C.-J. Wang, K.-K. Deng, K.-B. Nie, W. Liang, and Y.-C. Wu, Effect of Interface on Mechanical Properties and Formability of Ti/Al/Ti Laminated Composites. J. Market. Res., 2021, 14, p 1655–1669.

    CAS  Google Scholar 

  41. P.J. Wang, Z.J. Chen, C. Hu, B.X. Li, J.S. Lin, and Q. Liu, Effects of Annealing on the Interface Microstructures and Mechanical Properties of Hot Roll Bonded Ti6Al4V/AA6061 Clad Sheets. J. Market. Res., 2020, 9(5), p 11813–11825.

    CAS  Google Scholar 

  42. A.H. Assari, and B. Eghbali, Solid State Diffusion Bonding Characteristics at the Interfaces of Ti and Al Layers. J. Alloy. Compd., 2019, 773, p 50–58.

    Article  CAS  Google Scholar 

  43. D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Structural Properties of Ti/Al Clads Manufactured by Explosive Welding and Annealing. Mater. Des., 2016, 91, p 80–89.

    Article  CAS  Google Scholar 

  44. Z. Li, J. Zhao, F. Jia, X. Liang, Q. Zhang, X. Yuan, S. Jiao, and Z. Jiang, Interfacial Characteristics and Mechanical Properties of Duplex Stainless Steel Bimetal Composite by Heat Treatment. Mater. Sci. Eng., A, 2020, 787, p 139513.

    Article  CAS  Google Scholar 

  45. S. Wang, B.X. Liu, C.X. Chen, J.H. Feng, and F.X. Yin, Microstructure, Mechanical Properties and Interface Bonding Mechanism of Hot-Rolled Stainless Steel Clad Plates at Different Rolling Reduction Ratios. J. Alloy. Compd., 2018, 766, p 517–526.

    Article  CAS  Google Scholar 

  46. P. Bazarnik, B. Adamczyk-Cieślak, A. Gałka, B. Płonka, L. Snieżek, M. Cantoni, and M. Lewandowska, Mechanical and Microstructural Characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 Laminates Manufactured by Explosive Welding. Mater. Des., 2016, 111, p 146–157.

    Article  CAS  Google Scholar 

  47. A.H. Assari, and B. Eghbali, Interfacial Layers Evolution During Annealing in Ti-Al Multi-Laminated Composite Processed Using Hot Press and Roll Bonding. Met. Mater. Int., 2016, 22(5), p 915–923.

    Article  CAS  Google Scholar 

  48. A. Nassiri, G. Chini, A. Vivek, G. Daehn, and B. Kinsey, Arbitrary Lagrangian-Eulerian Finite Element Simulation and Experimental Investigation of Wavy Interfacial Morphology During High Velocity Impact Welding. Mater. Des., 2015, 88, p 345–358.

    Article  CAS  Google Scholar 

  49. R. Jamaati, and M.R. Toroghinejad, Investigation of the Parameters of the Cold Roll Bonding (CRB) Process, Mater. Sci. Eng., A, 2010, 527(9), p 2320–2326.

    Article  Google Scholar 

  50. Z. Li, J. Zhao, F. Jia, X. Liang, Q. Zhang, X. Yuan, S. Jiao, and Z. Jiang, Interfacial Characteristics and Mechanical Properties of Duplex Stainless Steel Bimetal Composite by Heat Treatment. Mater. Sci. Eng. A 2020. 787.

  51. X. Zhuo, Q. Zhang, H. Liu, Z. Hu, P. Zhang, J. Jiang, A. Ma, and Y. Wu, Enhanced Tensile Strength and Ductility of an Al-6Si-3Cu Alloy Processed by Room Temperature Rolling. J. Alloy. Compd., 2022, 899, p 163321.

    Article  CAS  Google Scholar 

  52. L. Qin, J. Wang, Q. Wu, X. Guo, and J. Tao, In-situ Observation of Crack Initiation and Propagation in Ti/Al Composite Laminates During Tensile Test. J. Alloy. Compd., 2017, 712, p 69–75.

    Article  CAS  Google Scholar 

  53. K.S.M. Sonti, B. Dash, K.V. Vamsi, H. Bandyopadhyay, B. Ravisankar, K. Sivaprasad, and S. Karthikeyan, Deformation Behavior of Al/Cu In-Situ Metal-Intermetallic Laminates at Low and High Strain Rates, J. Alloy. Compd., 2021, 873, p 159767.

    Article  CAS  Google Scholar 

  54. B.X. Liu, Q. An, F.X. Yin, S. Wang, and C.X. Chen, Interface Formation and Bonding Mechanisms of Hot-Rolled Stainless Steel Clad Plate, J. Mater. Sci., 2019, 54(17), p 11357–11377.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to gratefully acknowledge the financial support from National Natural Science Foundation of China (No. 52105418) and the Project of State Key Laboratory of High Performance Complex Manufacturing (No. ZZYJKT2021-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Ethics declarations

Competing interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Li, Z., He, D. et al. Investigation of the Annealing Effects on Mechanical Properties and Interfacial Characteristic of TA1/Al5083 Bimetal Composite. J. of Materi Eng and Perform 32, 10243–10253 (2023). https://doi.org/10.1007/s11665-023-07868-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07868-8

Keywords

Navigation